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Abstract

This thesis investigates topics in macroeconomics with nonlinear dynamics as their inherent feature. It

aims to further the understanding of the connection between the financial sector and economic fluctuations,

challenges of monetary policy in a low interest rate environment and how to mitigate the macroeconomic

consequences of a pandemic.

The first chapter investigates the connection between the shadow banking sector and the vulnerability

of the economy to a financial crisis. Motivated by the build-up of shadow bank leverage prior to the Great

Recession, I develop a nonlinear macroeconomic model that features excessive leverage accumulation and

show how this can cause a run. Introducing risk-shifting incentives to account for fluctuations in shadow bank

leverage, I use the model to illustrate that extensive leverage makes the shadow banking system runnable,

thereby raising the vulnerability of the economy to future financial crises. The model is taken to U.S.

data with the objective of estimating the probability of a run in the years preceding the financial crisis of

2007-2008.

The second chapter, joint with Francesco Bianchi and Leonardo Melosi, is motivated by the observation

that the Federal Reserve Bank has been systematically undershooting its 2% inflation target in the past twenty

years. This deflationary bias is a predictable consequence of the current symmetric monetary policy strategy

that fails to recognize the risk of encountering the zero-lower-bound. An asymmetric rule according to which

the central bank responds less aggressively to above-target inflation corrects the bias, improves welfare, and

reduces the risk of deflationary spirals.

The third chapter, joint with Matthieu Darracq Paries and Christoffer Kok, analyses the risk that an

intended monetary policy accommodation might actually have contractionary effects in a low interest rate

environment. We demonstrate that the risk of hitting the rate at which the effect reverses depends on the

capitalization of the banking sector by using a nonlinear macroeconomic model. The framework suggests

that the reversal interest rate is around −1% p.a. in the Euro Area. We show that the possibility of the

reversal interest rate creates a novel motive for macroprudential policy.

The fourth chapter, joint with Leonardo Melosi, studies contact tracing in a new macro-epidemiological

model with asymptomatic spreaders. Contact tracing is a testing strategy that aims to reconstruct the

infection chain of newly symptomatic agents. We show that contact tracing may be insufficient to stem the

spread of infections because agents fail to internalize that their decisions increase the number of traceable

contacts to be tested in the future. We provide theoretical underpinnings to the risk of becoming infected in

macro-epidemiological models.
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Chapter 1

Financial Crises and Shadow Banks: A

Quantitative Analysis

Abstract Motivated by the build-up of shadow bank leverage prior to the Great Recession, I develop a nonlinear

macroeconomic model that features excessive leverage accumulation and show how this can cause a bank run.

Introducing risk-shifting incentives to account for fluctuations in shadow bank leverage, I use the model to

illustrate that extensive leverage makes the shadow banking system runnable, thereby raising the vulnerability

of the economy to future financial crises. The model is taken to U.S. data with the objective of estimating the

probability of a run in the years preceding the financial crisis of 2007-2008. According to the model, the estimated

risk of a bank run was already considerable in 2004 and kept increasing due to the upsurge in leverage. I show that

levying a leverage tax on shadow banks would have substantially lowered the probability of a bank run. Finally, I

present reduced-form evidence that supports the tight link between leverage and the possibility of financial crises.

1.1 Introduction

The financial crisis of 2007-2008 was, at the time, the most severe economic downturn in the US since the Great

Depression. Although the origins of the financial crisis are complex and various, the financial distress in the

shadow banking sector has been shown to be one of the key factors.1 The shadow banking sector, which consists

of financial intermediaries operating outside normal banking regulation, expanded considerably before the crisis.

Crucially, there was an excessive build-up of leverage (asset to equity ratio) for these unregulated banks. Lehman

Brothers, a major investment bank at the time, elevated its leverage by around 30% in 2007 compared to just

three years earlier for instance.2 The subsequent collapse of Lehman Brothers in September 2008 intensified a

run on the short-term funding of many financial intermediaries with severe repercussions for the real economy

1See e.g. Adrian and Shin (2010), Bernanke (2018), Brunnermeier (2009) and Gorton and Metrick (2012).
2The leverage ratio rose from 24 to 31 between 2004 and 2007 (e.g. Wiggins et al., 2014). Other investment

banks such as Merrill Lynch and Goldman Sachs also elevated their leverage significantly.
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in the fourth quarter of 2008. Figure 1.1 documents these stylized facts about GDP growth and shadow bank

leverage using balance sheet data from Compustat and the Flow of Funds.3

In this paper, I build a new nonlinear quantitative macroeconomic model with shadow banks and occasional

bank runs that captures these dynamics. I use the model to point out how risk-shifting incentives for shadow banks

are a key factor for financial fragility to emerge. Importantly, the occurrence of a run on the shadow banking

system depends on economic fundamentals and is in particular linked to leverage. Risk-shifting incentives for

shadow banks resulting from limited liability may endogenously lead to excessive leverage, which then makes the

shadow banking system runnable. To assess the empirical implications of the model, the framework is fitted to the

salient features of the U.S. economy and especially the shadow banking sector. With the objective of estimating

the probability of a run around the time of the 2007-2008 financial crisis, I use a particle filter to extract the

sequence of shocks that account for output growth and shadow bank leverage. The estimated probability of a bank

run increases considerably from 2004 onwards and peaks in 2008. I discuss the idea of a leverage-tax, which is a

tax on the deposits of shadow banks, and quantify its impact on the probability of a bank run. Using quantile

regressions, I also provide reduced form evidence for the connection between leverage and the risk of financial

crisis.

The framework is a canonical quantitative New Keynesian dynamic stochastic general equilibrium model

extended with a banking sector. The banks in the model should be seen and interpreted as shadow banks. The two

features that are at the heart of the model are i) risk-shifting incentives, which determine leverage, and ii) bank

runs, which can occur because a deposit insurance is absent. Crucially, the interaction of these two characteristics

is the main mechanism that explains a financial crisis as will become clear below.

The first feature is the risk-shifting incentives of the banks, which determine how they accumulate leverage

as in Adrian and Shin (2014) and Nuño and Thomas (2017). Bankers have to choose between securities with

different volatilities in their returns. At the same time, the bankers are protected by limited liability, which

restricts the downside risk and thus distorts the security choice.4 To ensure an effective investment by the banks,

leverage is constrained by the depositors.5 In addition to this, the relative volatility of the securities, or simply

volatility, fluctuates exogenously as in Nuño and Thomas (2017), who also provide empirical evidence for the

importance of this shock. Fluctuations in volatility affect the leverage accumulation by changing the risk-shifting

incentives, and can result in periods of excessive leverage.

The second feature is that banks runs are possible in the spirit of Diamond and Dybvig (1983) because there

does not exist a deposit insurance. In contrast to a classical bank run, the run in my model is a self-fulfilling

rollover crisis as in Gertler et al. (2020).6 If depositors expect the banking sector to default, they stop to roll

over their deposits, and as a consequence, the banks have to sell their securities. The securities market breaks

3The leverage series relies on book equity, which is the difference between the value of the assets and the
liabilities. The details are shown in Appendix A.1.

4As shown in Adrian and Shin (2014), this financial friction based on the corporate finance theory microfounds
a value-at-risk approach, which is a very common risk management approach for shadow banks.

5Shadow banks mainly borrow from wholesale funding markets. The depositors, who borrow to the shadow
banks, are thus best thought of as institutional investors.

6Cole and Kehoe (2000) introduce the concept of a self-fulfilling roll-over crisis for sovereign bond markets.
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Figure 1.1 The upper graph shows two measures of shadow bank book leverage. The first measure is based on shadow bank
balance sheet data from Compustat (left axis). The alternative one uses Flow of Funds data (right axis). Appendix A.1 shows
the details. The lower graph shows the quarter on quarter real output growth rate.

down so that asset prices drop significantly. The losses from the firesale result in bankruptcy, which validates the

depositors’ original belief. As the banking system is only runnable if the firesale losses wipe out the equity of the

banks, the chance of such a self-fulfilling rollover crisis occuring depends on economic fundamentals, and links it

directly to the balance sheet of the banks.

My main theoretical contribution is to propose risk-shifting incentives as the new underlying driver for a

self-fulfilling rollover crisis. The mechanism directly relates to the build-up of leverage and is as follows. First,

low volatility reduces the risk-shifting incentives, which results in elevated leverage. Subsequently, credit and

output expand. At the same time, the banking sector’s loss absorbing capacities are diminished as the banks hold

relatively low equity buffers. A negative shock can then cause a bank run through self-fulfilling expectations. The

banking panic sets off a sharp contraction in output and pushes the economy from an expansion into a severe

recession. Importantly, the elevated leverage reduces loss absorbing capacities so that the banks become runnable.

This demonstrates how high leverage sows the seed for a crisis.

The predictions of the model match not only the facts about leverage and output, but also other major empirical

observations concerning financial crises. Schularick and Taylor (2012) use historical data for a large panel of

countries to establish that a financial crisis is usually preceded by a credit boom. Credit spreads, one of the

3



most watched financial variables, are low in the pre-crisis period and increase sharply during a financial crisis as

documented empirically in Krishnamurthy and Muir (2017). The results of my model fit well with these facts

about financial crises.

After calibrating the model to U.S. data, I conduct the main experiment of the model, which is a quantitative

assessment of the risk of a banking panic in the run-up to the Great Recession. The horizon of the analysis is

between 1985 and 2014 to include the period before the failure of Lehman Brothers in 2008. I use a particle filter

to extract the sequence of structural shocks that accounts for shadow bank leverage and real output growth. The

sequence allows to calculate the probability of a bank run implied by the model. The estimated probability of

a financial crisis starts to increase significantly from 2004 onwards and peaks in the first quarter of 2008. The

framework predicts in 2007:Q4 that the risk of a roll-over crisis in the next quarter is around 5%. For the entire

year ahead, the probability of a run increases to slightly below 20%.7 The estimation highlights the importance of

low volatility in causing the rise in leverage and making the banking system prone to instability.

The model captures the strong decline in output in the fourth quarter of 2008 after the failure of Lehman

Brothers. As the occurrence of a bank run is not exogenously imposed, the particle filter determines that

occurrence from the data. Importantly, this assessment of the bank run clearly selects that self-fulfilling rollover

crisis captures the bust. A counterfactual analysis in which deposits are rolled over suggests that GDP growth

would have been close to zero in the absence of the run, instead of very negative.

The framework can be used not only to evaluate the potential trade-offs of macroprudential policies but also

to quantify their potential impact on the vulnerability of the shadow banking system during the financial crisis

in 2007-2008. An idea discussed in policy circles is to implement a leverage tax, which would tax the deposit

holdings, for shadow banks. Specifically, the “Minnesota Plan to End too Big too Fail” from the Minneapolis

Federal Reserve Bank in 2017 proposes to tax the borrowing of shadow banks. This policy would encourage

banks to substitute deposits with equity, and the tax would also increase the funding costs of the shadow banks.

While this could result in lower net worth and increased financial fragility, the surge in costs could also lead to a

reduction in the market share of the shadow banks. I use the model to illustrate that such a tax would increase

financial stability, as an annual tax of 0.25% on deposits would mitigate the emergence of financial fragility

considerably. A counterfactual analysis shows that the leverage tax would have lowered the probability of a crisis

by around 10% to 20% in the period prior to the financial crisis of 2007-2008.

Additionally, I provide reduced-form evidence for the link between shadow bank leverage and macroeconomic

tail-risk, which is used as a proxy for a financial crisis. To study the tail-risk, it is useful to focus on the entire

distribution of GDP growth instead of a single estimate such as the mean. Using conditional quantile regressions

similar to the econometric approach of Adrian et al. (2019b), I study how shadow bank leverage impacts the lower

tails of the GDP distribution. The reduced-form analysis associates an increasing probability of large economic

contractions with elevated leverage. This finding corroborates the tight link between shadow bank leverage and

financial crisis.

7The emergence of the possibility of a bank run as an additional equilibrium has also been supported recently
with a non-structural approach by Adrian et al. (2019a). They show the existence of multiple equilibria for the
fourth quarter of 2008 conditional on data in the previous quarter using a reduced-form approach.
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In conclusion, I create a model to capture the dynamics of the accumulation of leverage and show how this

can endogenously result in a bank run. In the model, I show that the risk-shifting incentives of shadow banks can

capture the dynamics of key financial variables like leverage, credit and credit spreads. I take the model to the

data and estimate the sequence of shocks with a particle filter. This allows me to assess the underlying drivers of

a financial crisis. This estimation exercise also helps in understanding the probability of a financial crisis and in

evaluating the impact of macroprudential policies.

Related Literature Even though bank runs and leverage cycles have both been analysed independently, I show

that the connection between these approaches is the key to explain the run on the shadow banking sector after the

collapse of Lehman Brothers. Gertler et al. (2020) pioneer the incorporation of self-fulfilling rollover crises into

macroeconomic models and show that a bank run can account for the large drop in output observed in the fourth

quarter of 2008.8 Compared to their paper, mine emphasizes the importance of leverage and shows how elevated

leverage endogenously creates the scenario of a boom going bust as empirically shown by Schularick and Taylor

(2012). Introducing risk-shifting incentives as new channel allows to account for the build-up of leverage prior

to the financial crisis and connect it to the run on the shadow banking system.9 The other major difference is

that I take the model to the data and estimate with a particle filter the probability of a run on the shadow banking

sector in the years preceding the financial crisis. My work is also connected to other papers that incorporate bank

runs in quantitative macroeconomic frameworks such as Faria-e Castro (2019), Ferrante (2018), Mikkelsen and

Poeschl (2019), Paul (2019) and Poeschl (2020).

The paper also contributes to the literature about financial crises and its connection to excessive leverage

and credit booms.10 Adrian and Shin (2010), Brunnermeier and Pedersen (2009), Gorton and Ordonez (2014)

and Geanakoplos (2010) stress the importance of leverage, or of leverage cycles, for the emergence of financial

crises. In contrast to the literature, I show how the excessive accumulation of leverage can cause a self-fulfilling

bank run that then results in a financial crisis. More generally, Lorenzoni (2008) and Bianchi (2011) point out

that excessive borrowing can result in systemic risk because of a pecuniary externality that is not internalised

by agents. Several approaches can capture credit booms, including asymmetric information (e.g. Boissay et al.,

2016), optimistic beliefs (e.g. Bordalo et al., 2018) and learning (e.g. Boz and Mendoza, 2014; Moreira and

Savov, 2017), among others. Additionally, (time-varying) rare disasters (Barro, 2006; Wachter, 2013) can also

capture the disruptive effects of a financial crisis.

8Gertler and Kiyotaki (2015) and Gertler et al. (2016) are preceding important contributions that integrate bank
runs in standard macro models. Cooper and Corbae (2002) is an early study that features a dynamic equilibrium
model with runs that can be interpreted as a rollover crisis.

9The risk-shifting incentives have a very different impact on leverage compared to that of a run-away constraint,
where a banker can divert a fraction of assets that cannot be reclaimed, as used in Gertler et al. (2020). Risk-
shifting incentives combined with the volatility shock generate procyclical leverage, while leverage is normally
countercyclical because of the run-away constraint. To reconcile the run-away constraint with the evidence for
credit booms that generate busts, they rely on misbeliefs. Households and bankers have different beliefs, where
bankers are overly optimistic about future news.

10The paper is about the distress in the banking sector. Other studies such as Justiniano et al. (2015) and
Guerrieri and Lorenzoni (2017) also emphasize the role of housing booms.
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This paper also builds on contributions about financial frictions in macroeconomic models. One strand of

this literature points out the importance of volatility shocks, sometimes alternatively labeled as uncertainty or

risk shocks, in connection with financial frictions for the business cycle (e.g. Christiano et al., 2014; Gilchrist

et al., 2014). Adrian and Shin (2014) and Nuño and Thomas (2017) outline the importance of volatility in

financial markets in relation to risk-shifting incentives and emphasize the relevance of volatility fluctuations for

the dynamics of procyclical leverage. Brunnermeier and Sannikov (2014) show that lower exogenous risk can

result in financial vulnerability, what is called the volatility paradox. I add to this literature that low volatility

increases leverage and the associated upsurge in leverage makes the shadow banking system runnable.

The quantitative analysis adds to an evolving literature that empirically assesses nonlinear models with

multiple equilibria. To capture the nonlinearities of such models, a particle filter, as advocated in Fernández-

Villaverde and Rubio-Ramírez (2007), is needed. I take inspiration from the approach of Borağan Aruoba et al.

(2018) who examine the probability of different inflation regimes. In the sovereign default literature, Bocola

and Dovis (2019) use a particle filter to estimate the likelihood of a government default. Like my work, Faria-e

Castro (2019) also obtains model-implied probabilities for a bank run. However, there are important differences

in the work of this paper. My model incorporates the idea of a credit boom that turns to a bust, which allows for

a discussion how financial fragility emerges during good times. In addition to this, the question asked here is

very different, because Faria-e Castro (2019) models a run on the commercial banking sector and analyses the

potential scope of capital requirements, but I focus on a self-fulfilling rollover crisis in the shadow banking sector.

Other non-structural approaches that identify the multiplicity of equilibria resulting from a financial crisis are

based on estimated (multimodal) distributions (Adrian et al., 2019a) or Markov-Switching VARs (e.g. Bianchi,

2020). Finally, the link between financial conditions and macroeconomic downside risk has also been studied

recently (e.g. Giglio et al., 2016; Adrian et al., 2019b).

Layout The rest of this paper is organized as follows. Section II outlines the dynamic stochastic general

equilibrium model, while the conditions for a bank run and its connection to leverage are discussed in Section

III. I present the quantitative properties including the nonlinear solution method and calibration in Section IV.

Afterwards, I introduce the particle filter with the objective of estimating the probability of a bank run prior to the

recent financial crisis in Section V. The policy tool of a leverage tax is analysed in Section VI. In Section VII

provides the reduced-form evidence based on quantile regressions. The last section concludes.

1.2 Model

The setup is a New Keynesian dynamic stochastic general equilibrium model with a banking sector. The banks in

the model correspond to shadow banks as they are unregulated and not protected by deposit insurance. The main

features are the endogenous bank leverage constraint and the occurrence of bank runs.

Bankers have risk-shifting incentives based on Adrian and Shin (2014) and Nuño and Thomas (2017). They

have to choose between two securities that face idiosyncratic shocks to their return. Importantly, the two assets

differ in the mean and standard deviations of the idiosyncratic shock. Limited liability, which protects the losses
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of the bankers, distorts the decision between the two securities as it limits the downside losses. This determines

leverage endogenously. The other key element is that the banking sector occasionally faces system-wide bank

runs similar to Gertler et al. (2020). The occurrence of the bank run depends on fundamentals and in particular on

the leverage of the banking sector. During a run, households stop to roll over their deposits.11 This forces the

banks to sell their assets. The asset price drops significantly as all banks sell at the same time, which justifies the

run in the first place.

The rest of the economy follows a canonical New Keynesian model.12 There exist intermediate goods firms,

retailers and capital good producers. The retailers face nominal rigidities via Rotemberg pricing, and the capital

good producers face investment adjustment costs. Monetary policy follows a Taylor rule.

1.2.1 Household

There is a large number of identical households. The representative household consists of workers and bankers

that have perfect consumption insurance. Workers supply labor Lt and earn the wage Wt. Bankers die with a

probability of 1 − θ and return their net worth to the household to avoid self-financing. Simultaneously, new

bankers enter each period and receive a transfer from the household. The household owns the non-financial

firms, from where it receives the profits. The variable Ξt captures all transfers between households, banks and

non-financial firms.

The household is a net saver and has access to two different assets that are also actively used. The first option

is to make one-period deposits Dt into shadow banks that promise to pay a predetermined gross interest rate R̄t.

However, the occurrence of a bank run in the following periods alters the bank’s ability to honor its commitment.

In this scenario the household receives only a fraction xt, which is the recovery ratio, of the promised return. The

gross rate Rt is thus state-dependent:

Rt =

R̄t−1 if no bank run takes place in period t

xtR̄t−1 if a bank run takes place in period t
(1.1)

Securities are the other option. I distinguish between beginning of period securities Kt that are used to produce

output and end of period securities St. The households’ end of period securities SHt give them a direct ownership

in the non-financial firms. The household earns the stochastic rental rate Zt. The household can trade the

securities with other households and banks at the market clearing price Qt. The securities of households and

banks, where the latter are denoted as SBt , are perfect substitutes. Total end of period capital holdings St are:

St = SHt + SBt . (1.2)

11There is no explicit distinction between households and typical lenders on the wholesale market such as
commercial banks in the model. Poeschl (2020) discusses this assumption and shows that adding commercial
banks separately can result in amplification under some conditions.

12The banking sector is embedded in a New Keynesian setup because nominal rigidities help to replicate the
large drop in asset prices during a bank run (Gertler et al., 2020).
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The households are less efficient in managing capital holdings as in the framework of Brunnermeier and Sannikov

(2014). Following the shortcut of Gertler et al. (2020), capital holdings are costly in terms of utility. The costs are

given as:

UCt = Θ
2

(SHt
St

− γF
)2
St, (1.3)

where Θ > 0 and γF > 0. An increase in households’ capital holdings increases the utility costs, while an

increase in total capital holdings decreases the utility costs:

∂UCt
∂SHt

= Θ
(SHt
St

− γF
)

> 0, (1.4)

∂UCt
∂St

= −γFΘ
(SHt
St

− γF
)SHt
St

< 0. (1.5)

The budget constraint reads as follows:

Ct = WtLt +Dt−1Rt −Dt + Ξt +QtS
H
t + (Zt + (1 − δ)Qt)SHt−1, (1.6)

where Ct is consumption. The utility function reads as follows:

Ut = Et

{ ∞∑
τ=t

βτ−t
[

(Cτ )1−σh

1 − σh
− χL1+φ

τ

1 + φ
− Θ

2

(SHτ
Sτ

− γF
)2
SHτ

]}
. (1.7)

The first order conditions with respect to consumption, labor, deposits and household securities are:

ϱt = (Ct)−σ, (1.8)

ϱtWt = χLφt , (1.9)

1 = βEtΛt,t+1Rt+1, (1.10)

1 = βEtΛt,t+1
Zt+1 + (1 − δ)Qt+1

Qt + Θ(SHt /St − γF )/ϱt
, (1.11)

where ϱt is the marginal utility of consumption and βEtΛt,t+1 = βEtϱt+1/ϱt is the stochastic discount factor.

The first order conditions with respect to the two assets can be combined to:

EtRt+1 = Et
Zt+1 + (1 − δ)Qt+1

Qt + Θ(SH,t/St − γF )/ϱt
. (1.12)

This shows that the household’s marginal gain of the two assets must be equal in the equilibrium. There is a

spread between the return on capital and deposit rates due to the utility costs.
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1.2.2 Banks

The bankers’ leverage decision depends on risk-shifting incentives and the possibility of a bank run. I first present

the risk-shifting incentives abstracting from bank runs. Afterwards, the possibility of a bank run is incorporated

into the decision problem.

Risk-shifting Incentives Moral Hazard Problem

The banks face a moral hazard problem due to risk-shifting incentives that limits their leverage as in Adrian and

Shin (2014) and Nuño and Thomas (2017). The bank can invest in two different securities with distinct risk

profiles. Limited liability protects the banker’s losses in case of default and creates incentives to choose a strategy

that is too risky from the depositors’ point of view. To circumvent this issue, an incentive constraint restricts the

leverage choice. To ensure that households provide deposits, the bankers also face a participation constraint. On

that account, the risk-shifting problem is formulated as a standard contracting problem in line with the corporate

finance theory. The bankers maximise their net worth subject to a participation and incentive constraint.

There is a continuum of bankers indexed by j that intermediate funds between households and non-financial

firms. The banks hold net worth Nt and collect deposits Dt to buy securities SBt from the intermediate goods

producers:

QtS
Bj
t = N j

t +Dj
t . (1.13)

Bank leverage is defined as

ϕjt = QtS
B,j
t

N j
t

. (1.14)

After receiving funding and purchasing the securities, the banker converts the securities into efficiency units

facing the idiosyncratic volatility ωt+1 at the end of the period similar to Christiano et al. (2014). The arrival

of the shock is i.i.d over time and banks. The banker has to choose between two different conversions - a good

security and a substandard security - that differ in their cross-sectional idiosyncratic volatility. The good type ω

and the substandard type ω̃ have the following distinct distributions:

logωt = 0, (1.15)

log ω̃t
iid∼ N

(
−σ2

t − ψ

2 , σt

)
, (1.16)

where ψ < 1 and σt, which affects the idiosyncratic volatility, is an exogenous driver specified below. I abstract

from idiosyncratic volatility for the good security. For that reason, its distribution is a dirac delta function, where

∆t(ω) denotes the cumulative distribution function. The substandard one follows a log normal distribution, where

Ft(ω̃t) is the cumulative distribution function.
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Importantly, the good security is superior as it has a higher mean and a lower variance:

E(ω) = ω = 1 > e−ψ
2 = E(ω̃), (1.17)

V ar(ω) = 0 < [eσ
2

− 1]e−ψ = V ar(ω̃), (1.18)

because ψ < 1.13 However, the substandard security has a higher upside risk. In case of a very high realization of

the idiosyncratic shock, the return of the substandard security is larger. More formally, I assume that ∆t(ω) cuts

Ft(ω̃) once from below to ensure this property. This means that there is a single ω∗ such that

(∆t(ω) − F̃t(ω))(ω − ω∗) ≥ 0 ∀ω. (1.19)

Figure 1.2 shows the distributions and highlights the difference in mean, variance and upside risk.

As specified later in detail, limited liability distorts the choice between the securities and creates risk-shifting

incentives for shadow bankers. In fact, the difference in mean return and upside risk are weighted against each

other. The upside risk gives an incentive to choose the substandard security despite being inefficient as limited

liability protects the banker from large losses.

The shock σt affects the relative cross-sectional idiosyncratic volatility of the securities. In particular, it

changes the upside risk, while preserving the mean spread E(ω) −E(ω̃).14 I label the variable as volatility and

assume an AR(1) process:

σt = (1 − ρσ)σ + ρσσt−1 + σσϵσt , (1.20)

where ϵσt ∼ N(0, 1).

The banker earns the return RK,jt on its securities that depends on the stochastic aggregate return RKt and the

experienced idiosyncratic volatility conditional on its conversion choice:

RKjt = ωjtR
K
t = RKt if good type (1.21)

RKjt = ω̃jtR
K
t if substandard type (1.22)

The aggregate return depends on the asset price and the gross profits per unit of effective capital Zt:

RK,t = [(1 − δ)Qt + Zt]
Qt−1

. (1.23)

13In line with this assumption, Ang et al. (2006) show empirically that stocks with high idiosyncratic variance
have low average returns.

14This result does not depend on the assumption that the good security does not contain idiosyncratic risk. For
instance, the following distribution would give the same result: log ω̃t

iid∼ N(−0.5ησ2
t − ψ,

√
ησt), where η < 1.

The risk shock would preserve the mean between the two distributions: E(ω) = 1 > e−ψ
2 = E(ω̃). The variance

of the substandard shock would respond stronger to changes in σt: V ar(ω) = [eησ2 − 1] < [eσ2 − 1]e−ψ =
V ar(ω̃) which can satisfy the assumption that the distributions cut once from below.
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Figure 1.2 Trade-off between mean return and upside risk. The blue line depicts the PDF of the log normal distribution
associated with the substandard security. The blue dash dotted and red dashed line are the mean return of the substandard and
good security, respectively. The shaded area indicates the area associated with the upside risk.

Based on this, I can define a threshold value ωjt for the idiosyncratic volatility of the substandard security where

the banker can exactly cover the face value of the deposits D̄t = R̄Dt Dt:

ωjt =
D̄j
t−1

RktQt−1S
Bj
t−1

. (1.24)

The threshold is independent of the type of the security. However, the substandard security is more likely to fall

below this value due to the lower mean and higher upside risk.

If the realized idiosyncratic volatility is below ωjt , the banker declares bankruptcy. However, limited liability

protects the banker in such a scenario. The household ceases all the assets, but cannot reclaim the promised

repayment. This results in two constraints for the contract between the banker and the household. First, limited

liability distorts the choice between the two securities. The bank may invest in the substandard security despite its

inefficiency due to lower mean return and higher upside risk. To ensure that the bankers only choose the good

security, the banker faces an incentive constraint. Second, the household’s expected repayment needs to be larger

or equivalent to investing in the security. This constitutes the participation constraint.

I begin with the incentive constraint that deals with the risk-shifting incentives resulting from limited liability.

This friction limits the losses for bankers in case of default and thereby creates thereby incentives to choose the
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substandard securities. The banks profit from the upside risk, while the costs of downside risk are taken by the

households. This resembles a put option for the banker in the contract between the banker and households. The

household receives only the return of the assets in case of defaults, or put differently, the banker has the option to

sell its asset at strike price ωjt+1. Thus, the substandard security contains a put option π̃t that insures the bank

from the downside risk and is given as:

π̃t(ωjt+1) =
∫ ωjt+1

(ωjt+1 − ω̃)dFt(ω̃). (1.25)

By these assumptions, the put option of the substandard technology is larger at a given strike price ωjt :

π̃t(ωjt+1) > πt(ωjt+1) = 0. (1.26)

In particular, the put option of the standard security πt( ¯
ωjt+1) is zero due to the absence of idiosyncratic risk.

Thus, there is a trade-off between higher mean return of the good security and the higher upside risk of the

substandard security. Due to this trade-off, the bank faces an incentive constraint that ensures the choice of the

good security:

EtβΛt,t+1

{
θV jt+1(ω, SBjt , D

j

t ) + (1 − θ)[RKt+1QtS
Bj
t −D

j

t ]
}

≥ (1.27)

EtβΛt,t+1

∫ ∞

ωjt

{
θVt+1(ω, SBjt , D

j

t ) + (1 − θ)[RKt+1QtS
Bj
t ωjt+1 −D

j

t ]
}
dF̃t+1(ω),

where V jt+1(ω, SBjt , D
j

t ) is the value function of a banker. The LHS is the banker’s gain of the standard securities

and the RHS is the gain of deviating to the substandard security. It is important to note that the banks only hold

the standard security if the incentive constraint holds.

The participation constraint ensures that the households provide deposits. I can focus entirely on the good

security as it is the only choice in equilibrium. Due to the absence of bank runs and idiosyncratic volatility for

the good security, the banks do not default. The households receive the predetermined interest rate so that the

households’ expected face value of the deposits reads as follows:

Et[RDjt+1D
j
t ] = R̄Dt D

j
t . (1.28)

The households provide only funds to the banks if it is optimal to invest in deposits, which is captured in its

related first order condition:

EtβΛt,t+1R
D
t+1Dt ≥ Dt. (1.29)

Combining the two previous equations, the participation constraint reads as follows:

βEt[Λt,t+1R̄
D
t D

j
t ] ≥ Dt. (1.30)
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This condition ensures that the households hold deposits.

The problem of the banker is then to maximise the value of being a banker Vt:

V jt (N j
t ) = max

SBjt ,D̄t

EtΛt,t+1

[
θV jt+1(N j

t+1) + (1 − θ)(RKt QtS
Bj
t − D̄j

t )
]

(1.31)

subject to Incentive Constraint [Equation (1.27)],

Participation Constraint [Equation (1.30)],

where Nt is the banker’s net worth. The participation constraint and incentive constraint are both binding in

equilibrium and can be written as

βEt[Λt,t+1R̄
D
t ] ≥ 1, (1.32)

1 − e−ψ
2 = Et

[
π̃jt+1

]
, (1.33)

where the derivation is in the Appendix A.3.15

The incentive constraint shows the trade-off between higher mean return of the good security and the put

option of the substandard security. This constraint forces the banker to hold enough “skin in the game” and limits

the leverage of the banker. The reason is that the value of the put option depends on ϕt:

Et[π̃jt+1] = Et

[
ωjt+1Φ

( log(ωjt+1) + 1
2 (ψ + σ2

t+1)
σt+1

)
− e−ψ/2Φ

( log(ωjt+1) + 1
2 (ψ − σ2

t+1)
σt+1

)]
, (1.34)

where ωjt+1 =
R̄Dt

(
ϕjt − 1

)
RKt+1ϕ

j
t

. (1.35)

Specifically, the value of the put option increases in leverage, that is ∂Et[π̃t+1]/∂ϕt > 0.

The participation and incentive constraint do not depend on bank-specific characteristics so that the optimal

choice of leverage is independent of net worth. Therefore, we can sum up across individual bankers to get the

aggregate values. Bankers demand for assets depends on leverage and aggregate banker net worth and is given as:

QtS
B
t = ϕtNt. (1.36)

The net worth evolution is as follows in the absence of bank runs. Surviving bankers retain their earnings,

while newly entering bankers get a transfer from households:

NS,t = RKt QtS
B
t−1 −RDt Dt, (1.37)

NN,t = (1 − θ)ζSt−1, (1.38)

15I check numerically that the multipliers associated with the constraints are positive for the relevant state
space.
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where NS,t and NN,t are the net worth of surviving respectively new bankers. Aggregate net worth Nt is given

as:

Nt = θNS,t +NN,t. (1.39)

Bank Run Possibility and Risk-Shifting Moral Hazard Problem

A bank run is a systemic event that affects the entire banking sector. In particular, a run eradicates the net worth

of all banks, that is Nt = 0. All bankers are thus bankrupt and stop to operate. However, all agents incorporate

the possibility of a run. Their decision problem responds to the probability of a financial crisis. I discuss in

the following the implications on the contract between banker and households. Appendix A.3 contains a full

derivation.

The banker can only continue operating or return its net worth to the household in the absence of a run. The

value function depends now on the probability pt that a bank run takes place next period:

Vt(Nt) = (1 − pt)Et
[
Λt,t+1(θVt+1(Nt+1) + (1 − θ)(RKt QtSBt − D̄t))

∣∣∣no run
]
, (1.40)

where Et[·|no run] is the expectation conditional on no run in t + 1. For the ease of exposition, I use now a

superscript if the expectations are conditioned on the occurrence of a run or not, that is ENt [·] = Et[·|no run] and

ERt [·] = Et[·|run]

The probability pt is endogenous and is described in detail in the next section, where I derive the conditions

for a bank run. The bank’s value function decreases with the probability of a run as a run wipes out the entire net

worth. The banks’ commitment to repay the households is also altered. As the bankers are protected by limited

liability, the households do not receive the promised repayments. Instead, households recover the gross return of

bank securities RKt Qt−1S
B
t−1. The gross rate Rt is thus state-dependent:

Rt =

R̄t−1 if no bank run takes place in period t

RKt Qt−1S
B
t−1/Dt−1 if a bank run takes place in period t

(1.41)

The participation constraint, which is binding in equilibrium, includes the probability of a run as the banks

need to compensate the households for the tail-event of a run:

(1 − pt)ENt [βΛt,t+1R̄tDt] + ptE
R
t [βΛt,t+1R

K
t+1QtS

B
t ] ≥ Dt. (1.42)

The return in a run scenario is lower than the promised repayment. Consequently, the funding costs of the

bank, namely the interest rate R̄t, increase with pt. As the funding costs increase for the banks, they have lower

expected profits. As this increases the value of the limited liability, this pushes leverage down.
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Furthermore, the possibility of a run also alters the incentive constraint that is binding in equilibrium, which

reads as follows:16

(1 − pt)ENt [Λt,t+1R
K
t+1(θλt+1 + (1 − θ))[1 − e

−ψ
2 − π̃t+1]] = (1.43)

ptE
R
t [Λt,t+1R

K
t+1(e−ψ

2 − ωt+1 + π̃t+1)],

where λt is the multiplier on the participation constraint.

λt =
(1 − pt)ENt Λt,t+1R

K
t+1[θλt+1 + (1 − θ)](1 − ωt+1)

1 − (1 − pt)ENt [Λt,t+1RKt+1ωt+1] − ptERt [Λt,t+1RKt+1]
. (1.44)

The trade-off between higher mean return and upside risk still prevails, which is displayed on the LHS in equation

(1.43). It is now weighted with the probability to survive as the banker does not profit from a higher mean return

in case of a bank run.

However, there now exists an additional channel that affects the leverage decision and the funding of the

banks. If a bank run happens, then ωt > 1 holds by construction as the bank cannot repay the deposits for the

standard securities with ω = 1. Thus, no bank survives a run using the standard security. In contrast to this,

the substandard security offers the possibility to survive a bank run as the idiosyncratic volatility ω̃it is drawn

from a distribution. If ω̃it > ωt, the bank can repay its depositors because it profits from the upside risk of the

substandard security. It is important to note that this is out of equilibrium as no bank actually has substandard

securities. Thus, I assume that if a bank would invest in substandard securities and survived a run, then the bank

would shut down and repay its remaining net worth to the household. The RHS of equation (1.43) shows this

channel. An increase in the run probability makes the substandard technology more attractive from the bankers’

perspective and reduces leverage. It is thus a dampening force operating in the opposite direction of the moral

hazard problem.

The anticipation of a potential bank run is an additional channel that affects the leverage decision and funding

of the banks. An increase in the run probability makes the substandard technology more attractive from the

bankers’ perspective. Consequently, this pushes leverage down.

During a bank run, the net worth of the banks, who existed in the previous period is zero due to limited

liability. However, new banks are entering due to transfers from households so that net worth is given as

Nt = (1 − θ)ζSHt if bank run happens in period t. (1.45)

Afterwards, the banking sector starts to rebuild in period t+ 1 with the same transfer from households and using

retained profits in addition, that is:

Nt+1 = θ[(Rk,t+2 −Rt+2ϕt+1) +Rt+2]Nt+1 + (1 − θ)ζSHt+1. (1.46)

16Investing in substandard securities is an outside equilibrium strategy, which allows a banker to survive a run
in case of a very high realization of the idiosyncratic shock. It is assumed that the surviving bankers repay their
depositors fully and return their remaining net worth to the households.
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As the banking sector starts to immediately rebuild in period t, a bank run is already possible again in period

t+ 1.

1.2.3 Production and Closing the Model

The non-financial firms sector consists of intermediate goods producers, final good producers and capital good

producers. A standard Taylor rule determines the nominal interest rate.

Intermediate Goods Producers

There is a continuum of competitive intermediate good producers. The representative intermediate good producer

produces the output Yt with labor Lt and working capital Kt as input:

Y jt = At(Kj
t−1)α(Ljt )1−α. (1.47)

At is total factor productivity, which follows an AR(1) process. The firm pays the wage Wt to the households.

The firm purchases in period t − 1 capital St−1 at the market price Qt−1. The firm finances the capital with

securities SBt−1 from the bank and the households SHt−1, so that:

Kt−1 = SHt−1 + SBt−1. (1.48)

This loan is frictionless and the intermediate firm pays the state-contingent interest rate RK,t. After using the

capital in period t for production, the firm sells the undepreciated capital (1 − δ)Kt at market price Qt. The

intermediate output is sold at price MCMt , which turns out to be equal to the marginal costs. The problem can be

summarized as:

max
Kt−1,Lt

∞∑
i=0

βiΛt,t+i

{
MCt+iYt+i +Qt+i(1 − δ)Kt−1+i

−Rkt+iQt−1+iKt−1+i −Wt+iLt+i

}
. (1.49)

This is a static problem, of which the first order conditions are:

MCt(1 − α)Yt
Lt

= Wt, (1.50)

RKt = Zt +Qt(1 − δ)
Qt−1

, (1.51)

Zt = MCtα
Yt
Kt−1

. (1.52)
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Final goods retailers

The final goods retailers buy the intermediate goods and transform it into the final good using a CES production

technology:

Yt =
[ ∫ 1

0
(Y jt )

ϵ−1
ϵ df

] ϵ
ϵ−1

. (1.53)

The price index and intermediate goods demand are given by:

Pt =
[ ∫ 1

0
(P jt )1−ϵdf

] 1
1−ϵ

, (1.54)

Y jt =
(
P jt
Pt

)−ϵ

Yt. (1.55)

The final retailers are subject to Rotemberg price adjustment costs. Their maximization problem is:

Et

{ T∑
i=0

Λt,t+i
[(P jt+i
Pt+i

−MCt+i

)
Y jt+i − ρr

2 Yt+i
( P jt+i

P jt+i−1
− Π

)2
]}
, (1.56)

where Π is the inflation target of the monetary authority.

I impose a symmetric equilibrium and define Πt = Pt/Pt−1. The New Keynesian Phillips curve reads as

follows:

(Πt − Π)Πt = ϵ

ρr

(
MCt − ϵ− 1

ϵ

)
+ Λt,t+1(Πt+1 − ΠSS)Πt+1

Yt+1

Yt
. (1.57)

Capital goods producers

Competitive capital goods producers produce new end of period capital using final goods. They create

Γ(It/St−1)St−1 new capital St−1 out of an investment It, which they sell at market price Qt:

max
It

QtΓ
( It
St−1

)
St−1 − It, (1.58)

where the functional form is Γ(It/St−1) = a1(It/St−1)1−η + a2 as in Bernanke et al. (1999). The FOC gives a

relation for the price Qt depending on investment and the capital stock:

Qt =
[

Γ′
( It
St−1

)]−1

. (1.59)

The law of motion for capital is:

St = (1 − δ)St−1 + Γ
( It
St−1

)
St−1. (1.60)
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Monetary Policy and Resource Constraint

The monetary authority follows a standard Taylor Rule for setting the nominal interest rate it:

it = 1
β

(
Πt

Π

)κΠ (MCt
MC

)κy
, (1.61)

where deviations of marginal costs from its deterministic steady state MC capture the output gap. To connect

this rate to the household, there exists one-period bond in zero net supply that pays the riskless nominal rate it.

The associated Euler equation reads as follows:

βΛt,t+1
it

Πt+1
= 1. (1.62)

The aggregate resource constraint is

Yt = Ct + It +G
ρr

2 (Πt − 1)2Yt, (1.63)

where G is government spending and the last term captures the adjustment costs of Rotemberg pricing.

1.2.4 Equilibrium

The recursive competitive equilibrium is a price system, monetary policy, policy functions for the households,

the bankers, the final good producers, intermediate good producers and capital good producers, law of motion

of the aggregate state and perceived law of motion of the aggregate state, such that the policy functions solve

the agents’ respective maximization problem, the price system clears the markets and the perceived law of

motion coincides with the law of motion. The aggregate state of the economy is described by the vector of state

variables St = (Nt, SBt−1, At, σt, ιt), where ιt is a sunspot shock related to bank runs that is specified in the next

chapter. The details regarding the equilibrium description and different equilibrium equations can be found in the

Appendix A.2.

1.3 Multiple Equilibria, Bank Runs and Leverage

A bank run is a self-fulfilling event that depends on the state of the world. This scenario enters as an additional

equilibrium to the normal one in which households roll over their deposits. At first, I discuss the existence of this

equilibrium. Afterwards, the connection between the emergence of a bank run and leverage is discussed.

1.3.1 Bank Run and Multiple Equilibria

The model contains multiple equilibria resulting from the possibility of a bank run as in Diamond and Dybvig

(1983). Importantly, the existence of the bank run equilibrium emerges endogenously similar to Gertler et al.

(2020). The possibility of self-fulfilling expectations about a bank run depends on the aggregate state and

especially on the banks’ balance sheet strength. A household only expect the additional bank run equilibrium if
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banks do not survive it, that is an eradication of the entire banking sector would take place (Nt = 0). Therefore,

the multiplicity of equilibria occurs only in some states of the world similar to Cole and Kehoe (2000), who

characterize self-fulfilling rollover crisis in the context of sovereign bond markets.

The multiplicity of equilibria originates from a heterogeneous asset demand of households and bankers.

During normal times, that is in the absence of a bank run, households roll over their deposits. Banks and

households demand capital and the market clears at price Qt. This price can be interpreted as the fundamental

price. The bank can cover the promised repayments for the fundamental price:

[(1 − δ)Qt + Zt]SBt−1 > R̄t−1Dt−1. (1.64)

In contrast to this, a run wipes out the banking sector. Households stop to roll over their deposits in a run

so that banks liquidate their entire assets to repay the households. This eliminates their demand for securities.

Households are the only remaining agents that can buy assets in a run. Subsequently, the asset price must fall

to clear the market. The drop is particularly severe because it is costly for households to hold large amounts of

capital. This firesale price Q⋆t depresses the potential liquidation value of banks’ securities. A bank run can only

take place if the banks cannot repay the household. This is the case if the firesale liquidation value is smaller than

the household claims:

[(1 − δ)Q⋆t + Z⋆t ]SBt−1 < R̄t−1Dt−1, (1.65)

where the superscript ⋆ indicates the bank run equilibrium. The recovery ratio xt captures this relation:

xt =
[(1 − δ)Q⋆t + Z⋆t ]SBt−1

R̄t−1Dt−1
. (1.66)

The numerator is the firesale liquidation value and the denominator is the promised repayments. A bank run can

only take place if

xt < 1, (1.67)

as banks then do not have sufficient means to cover the claims of the households under the firesale price Q⋆t .

Based on the recovery ratio xt, I can partition the state space in a safe and a fragile zone. xt > 1 characterizes

the safe zone. The bank can cover the claims under the fundamental and firesale price. Therefore, bank runs are

not possible and only the normal equilibrium exists. In the fragile zone xt < 1, both equilibria exist. The banks

have only sufficient means given the fundamental price. Technically, there is a third scenario. If an absolutely

disastrous shock hits the economy, the bank could not even repay the households in the absence of a bank run. I

neglect the scenario as the probability is infinitesimal in the quantitative model.

As the run equilibrium coexists with the normal equilibrium, I occasionally have multiple equilibria. I select

among the equilibria using a sunspot shock similar to Cole and Kehoe (2000). The sunspot ιt takes the value 1

with probability Υ and 0 with probability 1 − Υ . If ιt = 1 materializes and xt < 1, a bank run takes place. The
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condition on the recovery ratio xt ensures that the run equilibrium is only chosen if it is optimal. Otherwise, the

normal equilibrium is chosen. The probability for a run in period t+ 1 is the probability of being in the crisis

zone next period and drawing the sunspot shock:

pt = prob(xt+1 < 1)Υ. (1.68)

The bank run probability is time-varying as xt+1 depends on the macroeconomic and financial circumstances.

1.3.2 Bank Run and Leverage

Leverage and the volatility shock determine to a large extent the possibility of a bank run for which I derived the

condition xt < 1. The recovery ratio xt can be expressed in terms of leverage ϕt:

xt = ϕt−1

ϕt−1 − 1
[(1 − δ)Q⋆t + Z⋆t ]

Qt−1R̄t−1
. (1.69)

An increase in leverage reduces the recovery ratio, that is

∂xt
∂ϕt−1

= − 1
(ϕt−1 − 1)2

[(1 − δ)Q⋆t + Z⋆t ]
Qt−1R̄t−1

< 0. (1.70)

This shows that a highly leveraged banking sector is more likely to be subject to a run. In particular, a previous

period leverage that shifts the recovery ratio below 1 enables a bank run.17 The volatility shock affects the

recovery ratio via the return on capital in the run equilibrium RK⋆t = (1 − δ)Q⋆t + Z⋆t . An increase in volatility

lowers the return and thereby the recovery ratio for a given level of leverage:

∂xt
∂σt

= ∂xt
∂RK⋆t

∂RK⋆t
∂σt

< 0. (1.71)

Figure 1.3 illustrates how the combination of the volatility shock and leverage determines the region. The

xt = 1 line is downward sloping and divides the two regions. First, it can be be seen that a large level of previous

period leverage and an increase in volatility pushes the economy in the fragile region as discussed previously.

Second, there is a region in which only the safe zone exists for the displayed shock size. Low leverage implies

that the economy is in the safe region as it would require very large shocks that are highly unlikely to push the

economy into the crisis.

The pre-crisis period is critical for the build-up of financial fragility because high leverage facilitates a bank

run. The model requires a credit boom that increases leverage in the first place. A reduction in the volatility

shock reduces the volatility of the substandard security. For a given leverage, the value of the put option declines.

The risk-shifting incentives become less severe. Therefore, banks can increase leverage such that the incentive

constraint is binding. This channel generates procyclical leverage. Thus, there needs to be initially a period of

17I abstract from the potential indirect impact of ϕt−1 on other variables such as the firesale price in the
derivative.
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Figure 1.3 The dependence on the safe and fragile regions on leverage ϕt−1 and the volatility shock. ϵσ
t

decreases in volatility that increase leverage. This enables the bank run in the first place. Tranquil periods sow the

seed of a crisis.

However, leverage and thus the probability of a bank run are constrained in the model. The agents in the

economy are aware of the prospect of a bank run which generates an opposing force in a boom. In case of a run,

their return on the standard security is zero. In contrast to this, they can profit from the substandard security. If

they draw a large individual realization, they can repay the depositors and survive the run. Thus, bankers are

more tempted to invest in the substandard security as the run likelihood rises. To satisfy the incentive constraint,

the banking sector reduces its leverage. This channel endogenously limits the probability of multiple equilibria.

A bank run is thus a tail event as leverage is bounded. This implies that banks can be highly leveraged as long as

the probability of a run is not too large. Despite this channel, the model contains a bank run externality. While the

agents anticipate a run, they do not take into account the effect of their decisions on the probability of a run.

In the following sections, the model is taken to the data and its quantitative implications are analysed.

1.4 Model Evaluation

In this section, I evaluate the model and its predictions with the objective of analyzing a typical financial crisis and

how the banking system becomes runnable. First, the data and the parameterization of the model are discussed.
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Then, the nonlinear solution method that incorporates the bank run equilibrium is explained. Afterwards, the

quantitative properties of the model are shown. Specifically, the emergence and unfolding of a typical financial

crisis is discussed.

1.4.1 Calibration

This section explains the mapping of the model to the data. The emphasis of the calibration is on the shadow

banking sector and its role in the recent financial crisis in the United States. I use quarterly data from 1985:Q1 to

2014:Q4 to adapt to the changing regulation of shadow banking activities. The starting point coincides with major

changes in the contracting conventions of the repurchasement agreement (repo) market, which is an important

source of funding for shadow banks, that took place after the failure of some dealers in the beginning of 1980s

(Garbade, 2006).18 In addition, this allows to focus on the period after the Great Inflation. After the financial crisis,

new regulatory reforms such as Basel III and Dodd-Frank Wall Street and Consumer Protection act overhauled

the financial system, which rationalizes to stop the sample in 2014.19

Preferences, Technologies and Monetary Policy The discount factor is set to 0.995, which corresponds to an

annualized long run real interest rate of 2%. This is line with the average of the real interest rates estimates of

Laubach and Williams (2003).20 The Frisch elasticity is set to match the elasticity of 0.75 for aggregate hours as

suggested in Chetty et al. (2011).21 The risk aversion is parameterized to 1, which implies a logarithmic utility

function. Output is normalized to 1, which implies a total factor productivity of A = 0.49. Government spending

G matches 20% of total GDP in the deterministic steady state. The production parameter α matches a capital

income share of 33%. The annual depreciation is chosen to be 10%, which implies δ = 0.025. I set the price

elasticity of demand to 10 to get a markup of 11%. I target a 1% slope of the New Keynesian Philipps curve so

that the Rotemberg adjustment cost parameter is ρ = 1000. I match the elasticity of the asset price ρr of 0.25

as in Bernanke et al. (1999). The parameters of the investment function normalize the asset price to Q = 1 and

the investment Γ(I/K) = I in the deterministic steady state. Monetary policy responds to deviations of output

and inflation, where the target inflation rate Π is normalized to 0% per annum. I parameterize κπ = 1.5 and

κy = 0.125 in line with the literature.

18There were three major changes in contracting conventions as documented in Garbade (2006). First, the
Bankruptcy Amendments and Federal Judgeship Act of 1984 altered the bankruptcy regulation of repos. Second,
lenders could earn interest in a repurchasement agreement. Third, a new repo contract called a tri-party-repo has
been adopted.

19Adrian and Ashcraft (2012) discuss the impact of these two most comprehensive reforms on the financial
system such as changed accounting standards. In addition to this, most of the major broker-dealers are now part
of bank holding companies, which gives additional protection.

20The two-sided estimated long run real interest rate of Laubach and Williams (2003) is 2.16% for the
considered horizon.

21Chetty et al. (2011) find a Frisch elasticity of 0.5 on the intensive margin and 0.25 extensive margin, which
points to an elasticity of 0.75 for the representative households in this framework.
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Table 1.1 Calibration

Parameters Sign Value Target / Source

(a) Conventional Parameters
Discount factor β 0.995 Risk free rate = 2% p.a.
Frisch labor elasticity 1/φ 0.75 Elasticity aggregate hours = 0.75%
Risk aversion σH 1 Log Utility
TFP level A 0.4070 Output = 1
Government spending G 0.2 Governm. spending to output = 0.2
Capital share α 0.33 Capital income share = 33 %
Capital depreciation δ 0.025 Depreciation Rate = 10% p.a.
Price elasticity of demand ϵ 10 Markup = 11%
Rotemberg adjustment costs ρr 1000 Slope of NK Phillips curve = 0.1%
Elasticity of asset price ηi 0.25 Elasticity of asset price = 25%
Investment Parameter 1 a1 0.5302 Asset Price Q = 1
Investment Parameter 2 a2 -.0083 Γ(I/K) = I
Target inflation Π 1.00 Normalization
MP response to inflation κπ 1.5 Literature
MP response to marginal costs κy 0.25 Literature

(b) Financial Sector
Parameter asset share γF 0.355 Size of shadow bank = 33%
Mean Substandard Technology ψ 0.01 Leverage = 14.4
Parameter intermediation cost Θ 0.1024 Annual Run probability = 2.5%
Fraction start capital ζ .0131 Credit spread = 2.31% p.a.
Survival Rate Banker θ 0.92 Implied from other parameters

(c) Shocks
Std. dev. Volatility shock σσ 0.0058 Std. dev. of leverage = 1.90
Std. dev. TFP shock σA 0.002 Std. dev. of output growth = 0.59
Persistence volatility shock ρσ 0.92 Persistence of leverage = 0.94
Persistence TFP shock ρA 0.95 Fernald (2014)
Sunspot Shock Υ 0.5 Strong increase of volatility in run

Financial Sector The financial sector represents the shadow banking sector, which is defined as runnable

intermediaries. In particular, I define these as entities that rely on short-term deposits that are not protected by the

Federal Deposit Insurance Corporations and do not have access to the FED’s discount window.22 The share of

total assets, which are held directly by the shadow banking sector, was 37.1% in 2006 and dropped to 28.3% in

2012 as shown by Gallin (2015) using the financial accounts of the United States.23 In line with this, I target that

the shadow banking sector holds 33% of total assets on average, setting the parameter γF = 0.42.24

22This definition applies to the following entities: Money market mutual funds, government-sponsored
enterprises, agency- and GSE-backed mortgage pools, private-label issuers of asset-backed securities, finance
companies, real estate investment trusts, security brokers and dealers, and funding corporations.

23Based on a broader definition of shadow banking activities, Poszar et al. (2010) suggest a larger share of the
shadow banking sector around 50%.

24This share is also in line with the macroeconomic modeling literature (e.g. Begenau and Landvoigt, 2018;
Gertler et al., 2020).
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The leverage ratio of the shadow banking sector is matched to balance sheet data of shadow banks from

Compustat as show in Figure 1.1.25 Specifically, the leverage series is calculated based on book equity, which

is the difference between value of portfolio claims and liabilities of financial intermediaries. An alternative

measure is the financial intermediaries’ market capitalization (e.g. market valuation of financial intermediaries).

Importantly, the appropriate concept in this context is book equity because the occurrence of a bank run in the

model depends directly on book equity that is denoted as net worth in the model. Furthermore, the interest is on

credit supply and financial intermediaries lending decision, which requires the usage of book equity as stressed

for instance in Adrian and Shin (2014).26 In the data prior to the financial crisis (from 1985:Q1 until 2007:Q3),

the leverage ratio was on average around 14.4. The matching concept is the stochastic steady state of Coeurdacier

et al. (2011a). It is defined as the point to which the economy converges if shocks are expected, but they do

not realize. In that regard, the calibration incorporates the possibility of future financial crisis. The choice of

ψ = 0.01 for the substandard technology firm calibrates leverage at the risky steady state.

The intermediation cost parameter Θ is set to match an annual run probability of 2.5% which corresponds to

a bank run on average every 40 years. This frequency is in line with the historical macroeconomic data of Jordà

et al. (2017). Their database suggests that the average yearly probability of a financial crisis is 2.7% in the U.S.

and 1.9% for a sample of advanced economies since the second world war.27 With the fraction of the start capital

ζ, I target an average spread of 2.25% to match the spread between the BAA bond yield and a 10 year treasury

bond. The survival rate θ is implied from the other parameters of the banking sector.

Shocks I calibrate the volatility shock to match the persistence and standard deviation of the leverage measure.

In addition to this, I use the TFP shock to match the standard deviation of output growth. The persistence of

the shock is aligned with the estimated persistence of the TFP series in Fernald (2014). The sunspot shock is

parameterized to result in a bank run with 50% in case of the multiplicity. Consequently, a bank run requires

a rather large increase in the volatility shock. This captures the strong increase in different volatility measures

experienced during the financial crisis. As a rather large contractionary shock is needed for a bank run, this

ensures that leverage is not increasing too much in a crisis in line with the data.

25In particular, I classify shadow banks as companies with SIC codes between 6141 - 6172 and 6199 - 6221.
This characterization contains credit institutions, business credit institutions, finance lessors, finance services,
mortgage bankers and brokers, security brokers, dealers and flotation companies, and commodity contracts
brokers and dealers.. The Appendix contains more information on the construction.

26He et al. (2010) and He et al. (2017) emphasize the importance of market leverage. However, market
capitalization is the appropriate measure related to the issuance of new shares or acquisitions decision as argued in
Adrian et al. (2013). Nuño and Thomas (2017) also provide a detailed view about the two concepts in a dynamic
stochastic general equilibrium framework.

27The average probability of a financial crisis for is 4.4% for the U.S. and 3.8% for the advanced economies
if the considered horizon starts in 1870. The Appendix contains more details regarding the construction of the
probability.
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1.4.2 Solution Method

The model is solved with global methods that incorporate the multiplicity of equilibria. A nonlinear global

solution is necessary due to the incorporation of bank runs. First, a financial panic destroys the entire banking

sector so that the dynamics are highly nonlinear. Second, the agents take the likelihood of a bank run into account

and respond to it.

I use a time iteration algorithm with piecewise linear policy functions based on Coleman (1990a) and Richter

et al. (2014). The method is adjusted to factor in the multiplicity of equilibria similarly to Gertler et al. (2020).

The details of the numerical solution are left to Appendix A.4.

1.4.3 Typical Financial Crisis and its Macroeconomic Impact

To understand the underlying drivers of a financial crisis, I assess the dynamics around a typical bank run. As

the possibility of a bank run is endogenous and depends on economic fundamentals, the emergence of financial

fragility can be studied. I simulate the economy for 500000 periods so that in total 3084 banks runs are observed.

Collecting the bank run episodes, I can construct an event window centered 10 quarters before and 10 quarters

after a bank run.28 Figure 1.4 displays the median along with 68% and 90% confidence bands of this event

analysis. The median is particularly informative about the emergence of a typical financial crisis.

A bank run is preceded by a build-up of leverage, elevated credit and low finance premium. While this implies

an economic expansion, financial fragility arises simultaneously due to the rising leverage of banks. Specifically,

the increase on leverage sows the seed for the crisis as the probability of a run in the quarter ahead increases. The

occurrence of a bank run causes a sharp economic contraction. Output drops by 2 percent from the previous

quarter in the period of run - which correspond to 8% annualized - for the median. In addition, the credit boom

goes bust and the finance premium spikes. Importantly, the observed dynamics reconcile the empirical facts

outlined in the introduction: i) sharp drop in output, ii) elevated leverage of shadow banks prior to collapse, iii)

credit boom precedes a financial crisis and iv) credit spreads are low before and spike during crisis.29

Crucially, a period of low volatility is the underlying force behind the emergence of the bank run. The

simulation points out this circumstance as not only the median, but also both confidence intervals of volatility

are considerably below its risky steady state prior to a run. On that account, this framework features a volatility

paradox in the spirit of Brunnermeier and Sannikov (2014). In contrast to this, the productivity shock is less

important for the build-up. While a positive TFP level enforces the boom, the median is only slightly above the

risky steady state. The mechanism behind the endogenous emergence of a financial crisis is as follows. Low

volatility results in a build-up of leverage. This creates financial fragility and opens up the possibility of a bank

run. The banks have relative low net worth to absorb potential losses. The realization of negative shocks pushes

the economy into the fragile zone. If depositors do not rollover their deposits, or in technical jargon a sunspot

28The simulation starts after a burn-in of 100000 periods. In total, the simulation features 3177 bank run
episodes, which corresponds to a bank run probability of 2.54% per year in line with the target of the calibration.

29Among others, see for instance Adrian and Shin (2010)), Bernanke (2018), Schularick and Taylor (2012) and
Krishnamurthy and Muir (2017) for the different stylized facts.
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Figure 1.4 Event-window around bank run episodes. Based on simulation of 500000 periods, median path and 68% as well as
90% confidence intervals of all bank runs are displayed ten quarters before and after bank run that takes place in period 0. The
scales are either as percentage deviations from the risky steady state (sss), basis points deviations from the rss or in levels. The
weight variable weight bank run shows the probability that a bank run occured in the period.

shock materializes, the banks are forced to sell their assets at a firesale price. As the bankers do not have enough

equity to cover the losses, a self-fulfilling run occurs.

The cyclicality of leverage is the key determinant in the model. Due to the volatility shock and the risk-shifting

incentives, leverage is procyclical in the model. This means that an increase in leverage raises output and credit.

This comovement generates the credit boom gone bust dynamics as shown in Schularick and Taylor (2012). To

better understand the importance of procyclical leverage, I discuss now the consequences of countercyclicality for

the predictions of the model. In the case of countercyclical leverage, high leverage would imply low output and
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low assets. A bank run would then occur in a bust and therefore could not capture the credit boom gone bust

dynamics.30 For that reason, understanding the leverage dynamics and matching the increase in leverage is key to

replicate the patterns around the financial crisis.

After the bank run, output drops sharply and securities fall. All banks are failing and only the newly entering

banks operate in the market. For this reason, the credit supply from the banking sector is very low. The leverage

of these new banks is initially very large, which overshoots the prediction in the data. As the old banks fail,

the returns for new banks are very large, which increases leverage initially. While this is a common problem in

the literature, the increase in leverage is already much more in line with the data. As seen later, this model can

actually track the observed behavior in leverage in the financial crisis.31 Mikkelsen and Poeschl (2019) show that

a bank run affects uncertainty endogenously. An extension along this path would be to incorporate an increase in

volatility in the bank run equilibrium. In that case, the model would even better capture the dynamics of leverage

due to the additional increase in volatility.

Financial Fragility and Macroeconomic Downside Risk The model shows that there is a substantial increase

in financial fragility prior to the bank run. The probability of a run for the next quarter peaks in the period before

the run. The median is on average 4% after it increases steadily in the periods before. At the same time, the upper

bound of financial fragility is limited as it peaks around 8%. The reason is that agents are aware of the possibility

of a bank run which endogenously limits the leverage of bankers due to the incentive constraint shown in equation

(1.43). This limits that the threat of a financial crisis arises. In other words, the model excludes a scenario in

which the possibility of a run next period is too large as this is conflicting with the decision of the agents. An

extension of the model could relax the rational expectations assumptions. For instance, agents could cognitively

discount the probability of a bank run.32 In such an extension, the probability of a run would increase.

The other important implication of this model is that not every boom ends in a bust. Even though elevated

leverage increases the likelihood, the economy can also converge back to normal times. This is the case if either

no sufficient contractionary shocks arrive or no sunspot shock materializes. Importantly, this property is in line

with recent empirical evidence of Gorton and Ordonez (2020). They show that not each boom results in a bust.

Summary of Results Taken together, the quantitative framework reconciles important stylized facts about bank

runs. For this reason, the model is well-suited to assess the emergence of financial fragility and study underlying

drivers around the recent financial crisis in 2007-2008 from a quantitative perspective. Therefore, I estimate the

probability of a financial crisis based on a filter in the next section.

30As an example of countercyclical leverage, see for instance the baseline model of Gertler et al. (2020), where
a bust precedes a bank run.

31In fact, my model is the first that allows for new bankers operating in the same period. Other models predict
increases in leverage up to 2000% after a bank run. As these newly entering banks have so high leverage, asset
prices would increase so much that the bank run equilibrium does not exist anymore.

32Gabaix (2020) introduces the idea of cognitive discounting.
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1.5 Quantitative Assessment: Financial Crisis of 2007 - 2009

I am now turning to the empirical implications of the model. The main goal is to examine the financial fragility

around the recently experienced financial crisis. In particular, I want to estimate the likelihood of a bank run

in the periods ahead in the run-up to the Great Recession. Furthermore, the structural drivers can be assessed.

Finally, the estimated path of shocks can be used to conduct counterfactuals.

The strategy is to employ a filter, which retrieves the sequence of the shocks including the sunspot shock.

This in turn can be used to calculate the objects of interest such as the macroeconomic tail-risk. To capture the

nonlinearity of the model, I use a particle filter as suggested in Fernández-Villaverde and Rubio-Ramírez (2007).33

I adapt the particle filter to take into account specifically the multiplicity of equilibria similar to Borağan Aruoba

et al. (2018). Actually, I extend the approach to handle not only multiplicity of equilibria, but also that the

probabilities of the equilibria are endogenously time-varying. This adjustment is necessary to take account of the

endogeneity of bank runs. The considered horizon is from 1985:Q1 to 2014:Q4 in line with the calibration.

1.5.1 Particle Filter

The particle filter can be used to estimate the hidden states and shocks based on a set of observables. It is

convenient to cast the model in a nonlinear state-space representation as starting point:

Xt = f(Xt−1, vt, ιt), (1.72)

Yt = g(Xt) + ut. (1.73)

The first set of equations contains the transition equations that depend on the state variables Xt, the structural

shocks vt and the sunspot shock ιt. In particular, the state variables and shocks determine endogenously the

selected equilibrium of the model, which are the normal and the run equilibrium. The transition equations are

different for the different regimes. The nonlinear functions f are obtained from the global solution method.

The second set of equations contains the measurement equations which connects the state variables with the

observables Yt, which are specified in the next paragraph. It also includes an additive measurement error ut.

The particle filter extracts a sequence of conditional distributions for the structural shocks vt|Y1:t and the

sunspot shock ιt|Y1:t, which provides the empirical implications of the model.34 Thereby, the filter evaluates

when a bank run occurs and provides the probability of a bank run in the next quarter. The algorithm and the

adaptation to the multiplicity of regimes is laid out in Appendix A.5.

Observables The observables Yt are GDP growth and shadow bank leverage, which have been used for the

calibration and are shown in the Figure 1.1 in the introduction. GDP growth is chosen as a model with financial

crisis should capture the large reduction in economic activity. GDP growth is measured as the quarter-to-quarter

33The particle filter uses sequential importance resampling based on Atkinson et al. (2019) and Herbst and
Schorfheide (2015)

34The filter also evaluates the likelihood function of the nonlinear model
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real GDP growth rate. I demean output growth as the trend growth is zero in the model. The model is also fitted

to leverage to capture the discussed key trade-off between leverage and financial fragility. I use the shadow bank

leverage measure based on shadow bank balance sheet data from Compustat as in the calibration. As stressed in

the calibration, the leverage measure is based on book equity, which corresponds directly to the definition of the

model.35 Thus, the observation equation can be written as:

Output Growtht

Leveraget

 =

100 ln
(

Yt
Yt−1

)
ϕt

+ ut, (1.74)

where the measurement error is given by ut ∼ N(0,Σu)

Measurement Error I include a measurement error in the observation equation. The particle filter requires

a measurement error to avoid degeneracy of the likelihood function. Another advantage of including the

measurement error is that can take into account noisy data. As it is very complicated to measure shadow bank

leverage, the underlying series is potentially very noisy series. The variance of the measurement error is set as a

fraction µu of the sample variance:

Σu = µudiag(V (Y1:t)), (1.75)

where V is the covariance matrix of the observables. The measurement error is set to 25% variance of the sample

data, which implies µu = 0.25.36

1.5.2 Results

To analyze the implications around the recent financial crisis, Figure 1.5 compares the data for leverage and

output with the estimated sequence based on the particle filter. The model can capture the fluctuations in the

data as the filtered median and the 68% confidence interval tracks closely the observables. In line with the data,

leverage increases substantially prior to the financial crisis. The peak is around 2008 with a leverage of close to

18. The model also takes account of the strong decrease in output in the fourth quarter of 2008.

Crucially, the model can account for this sharp drop in the fourth quarter of 2008 event via two different

channels: a run on the banking sector or large contractionary shocks. As the equilibria are not exogenously

imposed, the particle filter selects the regime depending on the fit with the data. This gives a real-time assessment

if a bank run took place. As shown in Figure 1.6, the median including the confidence intervals select the run

regime, which indicates a strong favor of the bank run regime based on the data.37 Bernanke (2018) and Gorton

and Metrick (2012) argue that the run on the shadow banking sector is responsible for the sharp and large decrease

in economic activity. To assess this through the lenses of the model, I construct a counterfactual analysis in which

35Appendix D contains more details on the data construction and its connection with the model.
36A measurement error of 25% is a conventional choice and has been used e.g. in Gust et al. (2017).
37The filtered weight of run in the fourth quarter of 2008 is 97%. Otherwise, the weight of the run regime is

basically 0% in all remaining periods.
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Figure 1.5 Filtered median of leverage and output growth is the blue line together with its 68% confidence interval. The
observables are shadow bank leverage and (demeaned) real output growth. The red line corresponds to the fourth quarter of
2008:Q4.

no sunspot shock materializes in the fourth quarter of 2008. This scenario without a run results in a diminished

economic contraction. To be precise, the bank run results in an additional 2.2% growth reduction in quarterly

terms. In that regard, the bank run contributed to 85% of the output drop, while the shocks in isolation are

responsible for 15% of the contraction in 2008:Q4.

To inspect the economic drivers behind the bank run in 2008:Q4, the filtered series of volatility and total

factor productivity are shown in Figure 1.6. There is a series of reductions in the volatility prior to the financial

crisis. In line with the idea of the volatility paradox, this period sows the seed of a crisis as it increases leverage

and thus financial fragility. In the fourth quarter of 2008, there are contractionary volatility and TFP shocks,

which trigger the bank run. While contractionary shocks are necessary to enable the run, the extent is very large
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Figure 1.6 Filtered median of volatility and TFP with its 68% confidence interval. The third plot shows the regime selection.
The red line indicates the fourth quarter of 2008.

to lower leverage after the run. At the same time, related concepts such as national financial conditions index or

uncertainty measures spike up in the fourth quarter in line with the predictions.

As a validity check of the empirical experiment, the filtered series of securities and finance premium can

be compared to events in the financial crisis. There is a securities boom that begins in the early 2000s, which

ends in a severe credit crunch. Furthermore, the finance premium is also very low prior to 2007. With the bank

run, there is a large spike in the finance premium. As the filter did not target credit or a credit spread such as

BAA - 10 year government spread, this corroborates the predictions of the model. Taken together, the model can

reconcile important dynamics of the recent financial crisis. This is a crucial requirement as this enables to assess

the emergence of financial fragility through the lenses of the model.
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Figure 1.7 Filtered median probability of a bank run next quarter with its 68% confidence interval. To disentangle the impact
of the structural shocks, the realizations of the volatility shock and TFP shock are set to 0 one at a time. The dashed green line
is a scenario that only uses the extracted volatility shocks. The black dash-dotted line is a scenario that only uses the extracted
TFP shocks. The red line indicates the fourth quarter of 2008.

Financial Fragility Figure 1.7 shows the probability of a bank run in the period ahead, which is a measure of

financial fragility. While there is a slight increase around the recession in 2001, there is a remarkable increase

from 2004 onwards. In that regard, the model finds a strong increase in financial fragilities preceding the financial

crisis by a few years. The rising leverage is the reason for this.

The probability of a bank run peaks in 2008 with a probability of around 5% for the next quarter. This estimate

can be also mapped in a probability of a bank run in the next four quarters. In particular, the probability to observe

a financial crisis during 2008 was close to but below 20% from a 2007:Q4 perspective, which highlights the

high level of financial fragility. Through the lenses of the model, the financial crisis is a tail risk, even though a

substantial one.

As a next step, a counterfactual analysis is considered to disentangle the structural sources of the financial

crisis. Only the extracted sequence of shocks for one shock is used at a time, while the other shock realizations

are set to 0. This not only allows to analyse the impact of each shock individually, but also the nonlinear impact

of a combination. While the total factor productivity has a modest impact around the recession in 2001, it does

not cause financial fragility in isolation in the run-up to the financial crisis. In contrast to this, the volatility shock

32



Figure 1.8 The Figure shows the multimodality in the one quarter ahead forecast that arises due to the bank run equilibrium
using contour plot. The contour plots display the joint distribution of GDP growth and volatility respectively TFP for 2008:Q4
conditional on 2008:Q3. Yellow indicates a high density, while dark blue indicates a low density The red square shows the
two modes. The forecasts are conditioned on the median realization in 2008:Q3.

is the main driver as it explains more than 90% in 2008. Nevertheless, the combination of the shocks can increase

financial fragility. This can be seen in the years preceding 2007 because financial fragility is considerably higher

in a scenario with both shocks than the sum of them in isolation.

Macroeconomic Tail Risk and Multimodality The increase in financial fragility causes large macroeconomic

downside risk as the possibility of a bank run emerges. To assess the downside risk, I evaluate the one quarter

ahead distribution of output and structural shocks. Figure 1.8 shows a contour plot of the one quarter ahead joint

distribution of output and the structural shocks for 2008:Q4 conditional on 2008:Q3. The distribution of output is

bimodal due to the possibility of a bank run. The normal equilibrium is associated with output growth centered

around 0. The run equilibrium is associated with a large economic contraction of around minus 2 to 3 percent

matching the actual drop in of -2.7% in 2008:Q4. This analysis also highlights the importance of contractionary

shocks for the emergence of a crisis that trigger the run. The run equilibrium is associated with high volatility and

low TFP.

The multimodality of equilibria has also been detected recently using a non-structural approach by Adrian et al.

(2019a). They estimate conditional joint distributions of economic fundamentals and financial conditions. Similar

to the predictions in the model, they find the occurrence of a second equilibrium for 2008:Q4 conditional on
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2008:Q3.38 Similar to my finding, the probability of the normal equilibrium is larger. Importantly, the possibility

of a bank run causes the appearance of a multimodal distribution.

1.6 Leverage Tax

A discussed idea in policy circles is to implement a leverage tax - a tax on the deposit holdings - for shadow banks.

Specifically, the “Minnesota Plan to End too Big too Fail” from the Minneapolis Federal Reserve Bank in 2017

proposes to tax the borrowing of shadow banks.39 It is potentially very difficult to regulate shadow banks as these

are financial intermediaries that by definition operate outside the regulatory banking umbrella. Another problem

poses that a reliable measure of the leverage of shadow banks is quite challenging. A tax on the borrowing is a

simple and tractable approach, which is well suited for that reason.

From a theoretical perspective, the models provides a motive for macroprudential policy for banks because

of a bank run externality. Agents do not take into account the impact of their own decisions on the bank run

probability. As a consequence, leverage is potentially too high, especially during good times when financial

vulnerability arises endogenously. On that account, the leverage tax could be interpreted in the Pigouvian sense

as this policy aims to correct undesirable leverage accumulation, which makes the banking system runnable in the

first place.40

However, the impact of the leverage tax on output and financial stability are ambiguous. The leverage tax

could increase output costs in non-crisis times, but could lower the frequency of a financial crisis. In that regard,

the change in economic activity in fluctuations are unclear. Furthermore, the impact of the leverage tax on

financial stability is ambiguous as it causes different opposing effects that create a potential trade-off. In fact,

there is an income effect, a substitution effect and an indirect effect.

The leverage tax requires the banker to pay at the end of the period a tax τ for its borrowings from households.

This income effect changes the net worth accumulation, which is now given as:

Nt = RKt Qt−1S
B
t−1 −RDt−1Dt−1 − τϕDt−1. (1.76)

The tax is costly and lowers the net worth for a given leverage choice in partial equilibrium. As a consequence,

the recovery ratio in case of a bank run is diminished taking all other variables as given:

xt =
[(1 − δ)Q⋆t + Z⋆t ]SBt−1(
R̄t−1 + τϕ

)
Dt−1

. (1.77)

38While I find the multiplicity of equilibria for a prolonged horizon, their study finds the multiplicity of
equilibria only for this one period.

39The plan consists of several recommendations for the entire banking sector. The focus in this paper is only on
the leverage tax. In line with the mentioned proposal, the leverage tax only applies to shadow banks in the model.

40The proposed tax is constant and does not vary with the business cycle. This could be a limitation as the
bank run externality is state-dependent as the probability of a bank run depends on economic fundamentals. For
instance, it is not needed to regulate the shadow banks during normal times without the threat of a bank run.
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Table 1.2 Selected moments of the model with and without a leverage tax

Model Specification/Moments Run probability SBt /St y σ(y) ϕ σ(ϕ)

With Runs Baseline model 2.54% 32.6% 0.986 0.52 14.8 2.04
Leverage tax τt 1.83% 31.3% 0.982 0.505 14.7 2.00

Without Runs Baseline model 0% 38.6% 0.994 0.47 14.5 1.59
Leverage tax τt 0% 35.3% 0.987 0.47 14.5 1.67

The income effect actually increases the threat of a financial crisis. The substitution effect operates over the

risk-shifting incentives. Specifically, the gain from limited liability increases, which makes the substandard

securities more attractive. The threshold value ωt for the idiosyncratic volatility of the substandard security where

the banker can exactly cover the face value of the deposits is now larger:

ωt = D̄t−1

RktQt−1S
Bj
t−1

. (1.78)

As a larger realization of the idiosyncratic return is needed to avoid bankruptcy, the gain from limited liability

π̃t increases. The incentive constraint as shown in equation (1.43) requires thus a lower leverage to ensure

an investment in the good security. This substitution effect lowers leverage and thereby lowers the bank run

probability.

The reduction in net worth and leverage forces the banks to hold less assets so that the relative share of assets

that is intermediated via the banking sectors falls. In case of a firesale, the drop in the price is now more moderate

as the households have to absorb fewer securities. This indirect effect directly lowers the systemic risk. The

reduced amount of assets stabilizes the economy and lowers the exposure to bank runs.

Quantitative Evaluation of the Leverage Tax To assess the ambiguous impact on output and financial stability,

a quantitative solution is required. The leverage tax is calibrated to τ = 0.625/100, which implies that the banks

have to pay a leverage tax of 0.25% annually on their deposits. To put the size of the tax in proportion, the

leverage tax corresponds approximately to 1/10 of the external finance premium.

Table 1.2 shows selected moments of the economy that are obtained from simulating the economy with and

and without the leverage tax for 500000 periods. The major take-away is that the leverage tax helps to reduce the

frequency of bank runs. The annual bank run probability drops to 1.8% compared to 2.5% in a world without

taxes, which shows the potential stabilization impact of the leverage tax. A lower frequency of bank runs also

helps to reduce the volatility of output. However, the tax lowers output in non-crisis times, so that average output

in total is lower than in the baseline model without a tax. This highlights the potential trade-off between output

and financial stability in the long run.

Even though leverage falls slightly, the main mechanism for the reduction in the frequency of bank runs is the

drop in the market share of shadow bank assets SBt /St. The market share falls by more than 1% in the model

with runs. As shown in the same table, the relative drop is even larger in an economy without the realization of
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Figure 1.9 Filtered median probability (blue) of a bank run next quarter with its 68% confidence interval in the baseline model
is compared to the median (red) of the model with the leverage tax.

bank runs. Agents take into account the possibility of a bank run, however a bank run does not materialize.41 In

fact, the relative small effect of the leverage tax on leverage is also emphasized in the no run scenario.

In addition to this, the impact of the leverage tax for the build-up of financial vulnerabilities in the financial

crisis in 2007 and 2008 can be evaluated. Based on the extracted sequence of distribution of shocks in Section

1.5, a counterfactual scenario with a leverage tax can be studied. In other words, the filtered shocks are fed in

the model to recalculate the evolution of the economy with a leverage tax.42 Figure 1.9 shows the impact of the

leverage tax on the vulnerability of the economy to a financial crisis between 1985 and 2014. This allows to

compare the baseline prediction with its confidence interval to the median realization with a leverage tax. The

leverage tax would have lowered the bank run probability between 0.5 and 1 percentage points.

1.7 Reduced Form Evidence: Quantile Regressions

The structural model predicts an increasing probability of a financial crisis already from 2004:Q4 onwards due

to increasing leverage in the shadow banking sector. I want to compare this prediction to the results from a

41This is the case if the realization of the sunspot shock is always 0, that is ιt = 0 ∀t.
42In this exercise, it is assumed that the leverage tax is active for the entire period.

36



non-structural approach. Specifically, I am interested in studying the tail-risk of output growth conditional on

shadow banking leverage. For this reason, it is useful to focus on the entire distribution of GDP growth instead of

a single estimate such as the mean forecast. Using this distribution, I can assess the behavior of the tails over

time. For that purpose, I am calculating the distribution of GDP growth one year ahead based on the econometric

approach of Adrian et al. (2019b), which is based on quantile regressions. The forecast can be conditioned on a

different set of variables, which allows to evaluate the impact of shadow banking leverage on estimated downside

risk. Even though there have been several studies focusing on different predictors, the role of shadow bank

leverage has not been assessed.43

Econometric Specification The starting point of the econometric specifications are quantile regressions

(Koenker and Bassett Jr, 1978). I estimate different quantiles of real GDP growth one year ahead, which is

defined as the average growth rate in the last four quarters ȳt+4 =
∑4
j=1(yt+j − yt+j−1)/4 =

∑4
j=1(∆yt+j)/4.

I regress the one year ahead GDP on current real GDP growth ∆yt = yt − yt−1 and current shadow banking

leverage ϕt:

Q̂τ (ȳt+4|xt) = xtβ̂τ , (1.79)

where Q̂τ is a consistent linear estimator of the quantile function, τ indicates the chosen quantile and xt =

[∆yt ϕt]. β̂τ minimizes the quantile weighted value of absolute errors:

βτ = arg min
β

T−4∑
t=1

(
τ1yt+4≥xtβτ |yt+4 − xtβτ | + (1 − τ)1yt+4<xtβτ |yt+4 − xtβτ |

)
, (1.80)

where 1 is an indicator function.

Results I estimate the quantile regressions using data from 1985:Q1 to 2014:Q4 in line with the structural

model. Figure 1.10 displays the one year-ahead forecast of GDP, which is also compared to the realized GDP

growth. The 95% quantile, which is the upper end of the area and can be interpreted as the upside risk, is very

stable over the entire horizon. In contrast to this, the 5% quantile, which is the lower end of the area and measures

the macroeconomic downside risk, is much more volatile.

To begin with, the downside risk during the recessions is discussed. If GDP growth is very low, the

macroeconomic downside risk increases. For this reason, the downside risk is very large in each recession

(1990-1991, 2001, 2007 -2009) that is observed in the sample.

However, there is a difference between the financial crisis and the other recessions. There was increasing

macroeconomic downside risk already prior to the financial crisis, which is not observed for the other recessions.

The 5% quantile falls from 2004 onward considerably until the fourth quarter of 2008. This suggests the build-up

of downside risk due to the financial crisis already in 2004 in line with the increase in shadow bank leverage.

43See e.g. Giglio et al. (2016), Hasenzagl et al. (2020) and Loria et al. (2019), among others.
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Figure 1.10 The one year ahead forecast of real GDP conditional on current GDP growth and shadow bank leverage using
data from 1985:Q1 to 2014:Q4. Different quantiles and the realized value are displayed.

In fact, rising leverage drives the increasing downside risk from 2004 onwards. To demonstrate this, I compare

5% quantile to a specification that is only conditioning on current GDP growth. While the differences in the

downside risk for the different specifications are negligible for the recessions in 1990-1991 and in 2001, the

difference is very large until the fourth quarter in 2008. For instance, the estimated 5% quantile for 2008:Q4 is

-2.6% in the baseline model, where leverage is included. In contrast to this, the 5% quantile is only -1.0% if it is

only conditioned on GDP. After the fourth quarter in 2008, the downside risk measures for both specifications are

closer as current GDP falls. Taken together, shadow bank leverage seems to be connected to the emergence of

financial fragility.

A related measure of macroeconomic downside risk is the probability that GDP drops below a specified level -

for instance below the annualized growth rate in 2008:Q4. Using the results from the quantile regressions, this

measure can be derived as shown in the Appendix A.6. In a nutshell, the conditional quantile estimates need to be

mapped into a quantile distribution.44 Based on the quantile distribution, the measure can then be derived. The

main prediction is that a specification without conditioning on leverage predicts a considerably lower probability.

To be precise, the inclusion of leverage almost doubles the probability of a large economic contraction starting

from 2004 until the arrival in 2008. In line with the previous result, this suggests again a tight link between

44In practice, I am using a skewed t-distribution to approximate the quantile function as discussed in the
Appendix A.6.
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leverage and macroeconomic downside risk. This difference in the probability is unique to the period before the

financial crisis. In the Appendix A.6, the conditional probability of a drop in output as in 2008:Q4 is shown for

the entire horizon.

1.8 Conclusion

I investigate the financial crisis of 2007 - 2009 through the lenses of a new nonlinear macroeconomic model that

is taken to the data. Understanding the dynamics that lead to a financial crisis is very important as it can help to

detect financial fragilities early on in the future and allows to understand the impact of macroprudential policies.

The first contribution is to highlight the build-up of shadow bank leverage as key determinant in the emergence

of a bank run. In particular, elevated leverage causes financial fragility, which sets the stage for a financial crisis.

I show that the interaction of high leverage with the endogenous occurrence of a bank run can reconcile a credit

boom gone bust and countercyclical credit spreads.

My second contribution is the quantitative analysis of the recent financial crisis. Fitting the model to important

moments of the shadow banking sector in the U.S., I can estimate the model-implied probability of a bank run in

the 2000s based on a particle filter. Crucially, I find that financial fragility starts to increase considerably from

2004 onwards. Conditional on 2007:Q4, the model predicts that the probability of a bank run during 2008 is close

to but below 20%.

The framework is also used to evaluate macroprudential policies. Specifically, a leverage tax based on a

proposal from the Minneapolis Federal Reserve Bank in 2017 would reduce the risk of a bank run. Based on

a counterfactual analysis around the recent financial crisis, I show that a conservatively calibrated leverage tax

could have mitigated the probability of a bank run by around 10%.
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Chapter 2

Hitting the Elusive Inflation Target

Joint with Francesco Bianchi and Leonardo Melosi

Abstract Since the 2001 recession, average core inflation has been below the Federal Reserve’s 2% target. This

deflationary bias is a predictable consequence of the current symmetric monetary policy strategy that fails to

recognize the risk of encountering the zero-lower-bound. An asymmetric rule according to which the central bank

responds less aggressively to above-target inflation corrects the bias, improves welfare, and reduces the risk of

deflationary spirals – a pathological situation in which inflation keeps falling indefinitely. This approach does not

entail any history dependence or commitment to overshoot the inflation target and can be implemented with an

asymmetric target range.

2.1 Introduction

Since the 2001 recession, core inflation has been on average below the Federal Reserve’s implicit 2% target.

This phenomenon has become even more severe in the aftermath of the 2008 recession. In other words, the

“conquest of US inflation” that started with the Volcker disinflation seems to have gone too far. Inflation, instead

of stabilizing around the desired 2% inflation target, has kept falling down. This deflationary bias is a predictable

consequence of a low nominal interest rate environment in which the central bank follows a symmetric strategy

to stabilize inflation. A low inflation target should be combined with an asymmetric monetary policy strategy

calling for more aggressive actions when inflation is below target than when inflation is above target.

Figure 2.1 provides evidence for the stylized fact that we are interested in. The year-to-year PCE core inflation

is reported with its ten-year moving average. In the early 1990s inflation was still well above 2%. By the end of

the same decade, the Federal Reserve had completed the long process that had started with the Volcker disinflation.

Around this time the Federal Reserve started discussing the possibility of moving to an explicit inflation targeting

regime. While an explicit 2% target was only announced on 25 January 2012 by Federal Reserve Chairman Ben

Bernanke, the existence of an implicit 2% target predates this historical shift. However, as the graph illustrates,
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Figure 2.1 Year-to-year PCE core inflation and its ten-year moving average. Unit: Annualized percentage rates.

inflation has not stabilized around the desired target, instead it has kept on falling and the deflationary bias

has grown over time. As of today, the ten-year moving average is around 1.6%. Importantly, a similar picture

emerges even when removing the 2001 and 2008 recessions. Furthermore, survey-based measures of long-term

inflation expectations also declined in recent years. The University of Michigan’s survey-based expectations on

inflation five to ten years out have fallen by 80 basis points since 2007. The survey of professional forecasters’

ten-year-ahead expectations on CPI inflation has followed a similarly declining pattern since 2012.

A large and increasing deflationary bias poses serious challenges to the central bank. For instance, it may

entail a considerable reputation loss if the private sector loses confidence in the Federal Reserve’s ability to bring

inflation back to target in an expansion. This outcome may be very costly as it could impair the central bank’s

capability to credibly commit to future actions, which is particularly critical to stimulate the economy when the

current interest rate is at its zero lower bound (ZLB) constraint (Krugman 1998; Eggertsson and Woodford 2003;

and Bassetto 2019). Furthermore, a prolonged period of low inflation might cast doubts about whether or not the

Federal Reserve is in fact committed to a symmetric 2% inflation target, as opposed to a two-percent ceiling on

the inflation rate. Such an interpretation of the Federal Reserve’s commitment can be shown to exacerbate the

bias.

In addition to these challenges, we show that a large and increasing deflationary bias is the harbinger of

deflationary spirals. Deflationary spirals represent a pathological situation in which inflation keeps falling

unboundedly. The deflationary bias arises when the probability of hitting the zero lower bound is nonzero. To

counteract this deflationary pressure, the central bank keeps the interest rate low even when the economy is

healthy and away from the zero lower bound. This deflationary pressure can become so large that the ZLB

becomes binding also in good states. Lacking the offsetting effects of monetary policy, the real interest rate starts

increasing and, in doing so, depresses aggregate demand, exacerbating the deflationary pressure. This vicious

circle of low inflation, rising real interest rates, and even lower inflation sets the stage for deflationary spirals
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and implies that no stable rational expectations equilibrium exists. Note that this scenario does not require any

recessionary shock to materialize. All it takes is a sufficiently large risk of encountering the ZLB constraint in the

future, which could be driven by an increase in macroeconomic uncertainty or a fall in the natural interest rate.

Given the persistent and increasing deflationary bias observed in the last twenty years, the US economy might

currently be in the proximity of this scenario, implying that remedying the deflationary bias is an issue of first

order importance.

The interaction of the following two factors explains the deflationary bias: (i) the remarkably low long-run

nominal interest rates and (ii) the perfect symmetry of the current monetary policy framework, which treats

positive and negative deviations of inflation from the central bank’s target on equal footing. We formalize our

argument using a prototypical non-linear New Keynesian model, which we solve with global methods to show

that in the absence of either one of these two factors the bias would not emerge.

When the long-run real interest rate is calibrated to the low values that seem plausible today (Laubach and

Williams 2003), the model predicts that average inflation will remain below target even during expansions.

Forward-looking price setters anticipate that in case of a large negative shock the central bank will be unable

to fully stabilize inflation due to the ZLB constraint on nominal rates. These beliefs bring about deflationary

pressures and depress inflation dynamics even when the economy is away from the ZLB. All changes in the

macroeconomic environment that make ZLB episodes more likely or more persistent also cause the deflationary

bias to become more severe. Thus, a decline in the long-term real interest rate raises the probability of hitting the

ZLB in the future and consequently makes the deflationary bias larger. Similarly, heightened macroeconomic

uncertainty causes or prolongs the ZLB and, hence, contributes to exacerbating the deflationary bias.

We argue that the symmetric approach to inflation stabilization, which is currently followed by the Federal

Reserve, loses efficacy in a low interest rates environment because it contributes to the formation of the deflationary

bias. An example of the Federal Reserve’s symmetric strategy is in the former Statement on Longer-Run Goals

and Monetary Policy Strategy, which read: “The Committee would be concerned if inflation were running

persistently above or below this objective. Communicating this symmetric inflation goal clearly to the public

helps keep longer-term inflation expectations firmly anchored [. . . ]”. We show that in the current low interest

rate environment, it is advantageous for the Federal Reserve to be more concerned about inflation running below

target than about inflation going above target.

The central bank can remove the deflationary bias and can raise social welfare by committing to adjust the

policy rate less aggressively when inflation is above target than when inflation is below target. By removing the

deflationary bias, this asymmetric strategy raises long-term inflation expectations, reduces the risk of encountering

the ZLB in the future, and makes deflationary spirals less likely. The proposed strategy raises the probability

of inflation on the upside and, in doing so, offsets the downside risk due to the ZLB, reducing macroeconomic

volatility. Thus, an apparent paradox emerges: In order to interpret its inflation target as symmetric, the central

bank should follow an asymmetric strategy. This paradox is only apparent, because the asymmetric strategy

corrects for the constraint represented by the ZLB.
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On August 27, the Federal Reserve revised its Statement on Longer-Run Goals and Monetary Policy Strategy

in the direction advocated by our paper. In commenting on the revised statement, Vice Chairman Richard Clarida

seems to echo the insights of our paper stating that “[...] the aim to achieve symmetric outcomes for inflation (as

would be the case under flexible inflation targeting in the absence of the ELB constraint) requires an asymmetric

monetary policy reaction function in a low r* world with binding ELB constraints in economic downturns.”

Of course, in practice, it may not be easy for the central bank to convince agents that it has adopted an

asymmetric strategy when monetary policy is already constrained by the zero lower bound. If the central bank

is perceived as being forward looking, announcing the new policy would be credible because the asymmetric

strategy reduces the risk of encountering the zero lower bound in the future. If instead the public perceives the

central bank as myopic, the central bank can conduct an opportunistic reflation to demonstrate that it has indeed

adopted the asymmetric strategy. To conduct an opportunistic reflation, the central bank announces the adoption

of the asymmetric strategy in the aftermath of a shock that pushes inflation above target. Even though this action

leads to a higher inflation rate in the short run, which entails a welfare loss, the rise in inflation offers the central

bank the opportunity to demonstrate that the central bank is now committed to follow the asymmetric strategy.

We show that in our calibrated model an opportunistic reflation improves welfare, unless the size of the shock is

implausibly large.

In the minutes of the meeting of September 17-18 2019, the Federal Open Market Committee (FOMC)

discussed whether its current long-run framework can be improved by adopting asymmetric strategies that require

to “respond more aggressively to below-target inflation than to above-target inflation,” in line with what advocated

in this paper. Furthermore, according to the minutes, several participants suggested a target range as an effective

way to communicate this asymmetric strategy. We use the model to show that the introduction of such a range

can indeed close the deflationary bias and hence reduce the risk of deflationary spirals provided that the range

itself is asymmetric around the desired inflation objective. For instance, if the central bank is committed not to

respond to inflation when inflation is within the target range, specifying a range between 1.5 percent and 2.85

percent will remove the deflationary bias. We show that while the degree of asymmetry in the range required to

remove the bias depends on the strength of the central bank’s in-range response to inflation, the required degree

of asymmetry is generally fairly modest.

Kiley and Roberts (2017) and Bernanke et al. (2019) study a set of rules to mitigate the severity of recurrent

ZLB episodes. Mertens and Williams (2019) evaluate a large varieties of monetary policy rules (including dynamic

rules such as price-level-targeting rules, average-inflation-rate rules, and shadow-rate rules) and conclude that

dynamic rules, which make up for forgone accommodation after the ZLB episode, can eliminate the deflationary

biases and deliver better macroeconomic outcomes than static rules (such as the Taylor rule). Unlike dynamic

rules, the asymmetric strategy we propose does not rely on history dependence to solve the deflationary bias.

Therefore, the central bank is not committed to engineer deflation following a period of above-target inflation.

Similarly, the asymmetric strategy does not contemplate inflation overshooting; that is, a contingency in which

the central bank maneuvers the policy rate so as to create positive deviations of inflation from its target to make

up for past periods in which inflation ran below the central bank’s target. Unlike the standard approach in this
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literature that studies linearized models with a kink in the monetary policy reaction function, we solve the fully

non-linear specification of the model with global methods. This approach allows us to capture the effects of the

asymmetric rules considered in the paper.

Adam and Billi (2007) and Nakov (2008) were among the first to formally show that the deflationary bias and

the corresponding output bias arise in New Keynesian models in which the nominal interest rate is occasionally

constrained by the zero lower bound. With respect to the existing literature, we emphasize that the symmetry of

standard monetary policy rules (e.g., the Taylor rule) plays an important role for these biases to arise and show

that adopting an asymmetric strategy can remove these biases.

The paper is organized as follows. In Section 2.2, we present a prototypical New Keynesian model to study the

deflationary bias, the solution method, and the calibration of the model to U.S. data. In Section 2.3, we introduce

a simplified version of the model to illustrate the conditions that give rise to the deflationary bias and when the

deflationary bias turns into deflationary spirals. In Section 2.4, we show that given the low long-run real interest

rate, inflation fails to converge to the Federal Reserve’s 2% inflation target in the long run. We also assess that the

sensitivity of the bias to the level of macroeconomic uncertainty and to the natural rate of interest. In Section 2.5,

we introduce the asymmetric strategy and show that it can remove the deflationary bias. We also show that this

strategy improves households’ welfare compared to following a symmetric Taylor rule. We also show how the

asymmetric strategy can be implemented in the aftermath of an inflationary shock (opportunistic reflation). In

Section 2.6, we use the model to evaluate the effects of introducing a target range, which was recently discussed

by the FOMC as a way to implement asymmetric strategies of the kind proposed in this paper. In Section 2.7, we

conclude.

2.2 The Model

In this section, we introduce a prototypical New Keynesian model in the tradition of Clarida, Galí, and Gertler

(2000), Woodford (2003), and Galí (2015) augmented with a zero lower bound constraint for the nominal interest

rate set by the monetary authority. The model is solved with global methods in its non-linear specification.

2.2.1 Model description

The economy consists of households, final goods producers, a continuum of monopolistic intermediate goods

firms, a monetary authority, and a fiscal authority. Households buy and consume the final goods from producers,

trade one-period government bonds, and supply labor to firms. The final goods producers buy intermediate goods

and aggregate them into a homogenous final good using a CES aggregation technology. The intermediate goods

firms set the price of their differentiated good subject to price adjustment costs a la Rotemberg. They demand

labor to produce the amount of differentiated goods to be sold to households in a monopolistic competitive market.

Labor is the only factor of production. The fiscal authority balances its budget in every period. The monetary

authority sets the interest rate for the government bonds.
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The Representative Household In every period, the representative household chooses consumption Ct, labor

Ht, and government bonds Bt so as to maximize the expected discounted stream of utility

E0
∑∞

t=0
βtζdt

[
(1 − σ)−1

C1−σ
t − χ (1 + η)H1+η

t

]
(2.1)

subject to the flow budget constraint

PtCt +Bt = PtWtHt +Rt−1Bt−1 + Tt + PtDivt (2.2)

where Pt is the price level, Wt is the real wage, Rt is the gross interest rate, Tt are lump-sum taxes and Divt are

real profits from the intermediate good firms. Bt denotes the one-period government bonds in zero net supply.

The preference shock ζdt follows an AR(1) process in logs ln(ζdt ) = ρζ ln(ζdt−1) + σζ
d

ϵζ
d

t .

In this paper, we only focus on a demand-side shock because this type of shock is found to play the leading

role in explaining business cycle fluctuations in estimated New–Keynesian DSGE models (Smets and Wouters

2007, Christiano et al. 2005, and Campbell et al. 2012). Furthermore, this is the shock typically used to

model zero lower bound events (Eggertsson and Woodford 2003). Mark-up shocks could in principle create an

interesting trade-off between inflation and output stabilization, but in estimated DSGE models they only explain

high frequency movements in inflation, with no significant effect on output. Focusing on only one shock facilitates

the exposition of the main mechanism behind the deflationary bias and the deflationary spirals.

Final Goods Producers Final goods producers transform intermediate goods into the homogeneous good,

which is obtained by aggregating intermediate goods using the following technology:

Yt =
(∫ 1

0
Yt(j)

ϵ−1
ϵ df

) ϵ
ϵ−1

, (2.3)

where Yt(j) is the consumption of the good of the variety produced by firm j.

The price index for the aggregate homogeneous good is:

Pt =
[∫ 1

0
Pt(j)1−ϵdf

] 1
1−ϵ

, (2.4)

and the demand for the differentiated good j ∈ (0, 1) is

Yt(j) = (Pt(j)/Pt)−ϵ
Yt. (2.5)

Intermediate Goods Firms The firm j produces output with labor as the only input

Yt(j) = A Ht(j)α (2.6)

45



Parameters Value Parameters Value
β Steady state discount rate 0.9975 φ Rotemberg pricing 79.41
α Production Function 1 θΠ MP inflation response 2
σ Relative risk aversion 1 θY MP output response 0.25
η Inverse Frisch elasticity 1 4 log (Π) Annualized Inflation target 2%
ϵ Price elasticity of demand 7.67 ρζd Persistence preference shock 0.60
χ Disutility labor 0.87 100σζd Std. dev. preference shock 1.175

Table 2.1 Benchmark calibration: Parameter Values

where A denotes the total factor productivity. The firm j sets the price Pt (j) of its differentiated goods j so as to

maximize its profits:

Divt(j) = Pt(j)
(
Pt(j)
Pt

)−ϵ
Yt
Pt

− α mct

(
Pt(j)
Pt

)−ϵ

Yt − φ

2

(
Pt(j)

ΠPt−1(j) − 1
)2

Yt, (2.7)

subject to the downward sloping demand curve for intermediate goods. The parameter φ > 0 measures the cost

of price adjustment in units of the final good.

Policy makers The monetary authority sets the interest rate Rt responding to inflation and output from their

corresponding targets. The monetary authority faces a zero lower bound constraint. The policy rule reads as

follows

Rt = max
[
1, R (Πt/Π)θΠ (Yt/Y )θY

]
. (2.8)

where Π and Y denote the inflation target which pins down the inflation rate in the deterministic steady state and

the natural output level, which is the level output that would arise if prices were flexible. The fiscal authority is

assumed to follow a passive policy rule, moving a lump-sum tax to keep debt on a stable path.

Resource Constraint The resource constraint is

Ct = Yt

[
1 − .5φ (Πt/Π − 1)2

]
. (2.9)

2.2.2 Model Solution and Calibration of Parameters

We solve the model with time iterations and linear interpolation as in Richter et al. (2014). Expectations are

evaluated with Gauss-Hermite Quadrature. A detailed description about how we solve the model is provided

in Appendix B.1. See Fernández-Villaverde et al. (2016) for a review of alternative solution methods based on

perturbation methods.

We set the discount factor β to 0.9975 that corresponds to an annualized real interest rate of one percent,

which is in line with the FOMC’s Summary of Economic Projections (SEP) of September 2018. The standard

deviation of preference shocks σζ
d

is chosen to be in line with the standard deviation of the U.S. real GDP growth
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rate over a period ranging from the first quarter of 1983 through the fourth quarter of 2007. This period has been

characterized by record low macroeconomic volatility and therefore the calibrated value of the standard deviation

of preference shocks should be regarded as low by historical standards. For instance, the standard deviation of the

U.S. real GDP growth rate was twice as big in the 1970s. We will show how trend inflation and the long-term real

interest rate vary under different assumptions about the Post-Great Recession macroeconomic volatility.

The Rotemberg parameter φ is the equivalent to a Calvo parameter of 0.75 in case of a first-order approxima-

tion. The calibrated value for the demand elasticity ϵ implies a steady-state markup of 15 percent. The parameter

controlling the disutility of labor χ is set to normalize the steady-state level of employment to unity.

The persistence of preference shocks ρζ is set to 0.60. Higher values for this parameter prevents us from

solving the model. The same problem occurs if the variance of the preference shock is too high. Both parameters

lift the unconditional volatility of preference shocks and hence the number of future periods agents expect

monetary policy to be passive because of the ZLB constraint. We set the inflation target to 2%.1 The remaining

parameters are standard and are listed in Table 2.1.

2.3 Deflationary Bias and Deflationary Spirals

To gain intuition about the causes of the deflationary bias and its relation with the deflationary spirals, we consider

a simplified version of the model presented in the previous section. We assume that the central bank does not

respond to the output gap (θY = 0) and that the preference shock can only take two values low (bad state)

and high (good state); i.e., ζdt ∈
{
ζdL, ζ

d
H

}
with ζdH > ζdL. When the realizations of the preference shock are

binary, equilibrium outcomes can be conditioned on the high or low value of the preference shock and hence

can be characterized by solving a set of nonlinear equations as explained in greater detail in Appendix B.2. This

simplified version of the model will prove useful for understanding the causes of the deflationary bias and those

of the deflationary spirals and why these two outcomes are intertwined. Once we have established these points,

we will go back to the benchmark model and the calibration introduced in the previous section.

Given the structure of the simplified model, we can partition the model equilibrium conditions into two blocks

of equations, one for the good state and one for the bad state. In what follows, we focus on the equilibrium in

the good state because - as we will see - this is the state where the deflation bias arises. The red dashed line in

Figure 2.2 represents the interest rate RH as function of inflation ΠH as implied by the Taylor rule in the good

state, subject to the ZLB constraint. The blue line in the same figure conflates the restrictions imposed on the

inflation rate and the nominal interest rate in the good state by all the other equations. Importantly, this curve also

takes into account the equilibrium conditions for the bad state because agents in the model are forward looking.

The intersections between the red dashed line and the blue solid line give us the (stable) Rational Expectations

equilibria in the good state. Appendix B.2 describes how these two lines are worked out.

1There is some disagreement about what the Federal Reserve’s effective inflation objective was before 2012
(Shapiro and Wilson 2019). However, there is a strong consensus that the objective has been 2 percent since 2010.
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Figure 2.2 Equilibrium interest rate and inflation when the preference shock is high (good state) for various volatilities of
shocks. The red dashed line in this figure represents the Taylor rule in the good state, subject to the ZLB constraint. The blue
line in the same figure conflates the restrictions imposed on the inflation rate and the nominal interest rate in the good state by
all the remaining equations –including the equations conditional on the bad state. The intersections between the red dashed
line and the blue solid line are the (stable) Rational Expectations equilibria in the good state. The blue dashed-dotted line
captures the counterfactual case in which we do not impose the ZLB constraint on the nominal interest rate in the bad state
and hence the slope of the blue line does not change.

The blue line is upward sloping because a fall in the equilibrium inflation rate in the good state, ΠH , lowers

inflation expectations and hence the nominal interest rate in the good state, RH .2 The blue line also presents

a kink and gets steeper for low values of inflation in the good state. When inflation in the good state declines,

the partial equilibrium effect is such that expected inflation declines under both states, depressing inflation in

the bad state. When the ZLB is not binding, the central bank responds by lowering the interest rate in the bad

state. However, for sufficiently low levels of inflation in the good state, the central bank encounters the zero

lower bound in the bad state. The existence of this threshold creates the kink in the blue line. When inflation is

below this threshold, the ZLB constraint is binding in the bad state and any further decline in inflation in the good

state implies an increase in the real interest rate in the bad state, which exacerbates the recession and the drop in

inflation in the bad state. In the good state, agents anticipate that the recession and deflation in the bad state will

be more severe and these beliefs determine a steeper decline in inflation expectations and the nominal interest

2Next period’s inflation expectations are the weighted average of the equilibrium inflation expectations in the
two states. In symbols, EtΠt+1 = pHH ΠH + (1 − pHH) ΠL, where pHH is the probability that the economy
will stay in the good state in the next period and Πi, i ∈ {H,L}, denotes the equilibrium inflation in the state
ζdt+1 = ζi.

48



rate in the good state. For comparison, the blue dashed-dotted line captures the counterfactual case in which we

do not impose the ZLB constraint on the nominal interest rate in the bad state and hence the slope of the blue

dashed-dotted line does not change.

The four plots of Figure 2.2 show the equilibrium in the good state for various levels of volatility of the

discrete shock.3 In particular, we consider scenarios of low volatility (ζdL = 0.9875, ζdH = 1.0025), medium

volatility (ζdL = 0.9625, ζdH = 1.0075), high volatility (ζdL = 0.9375, ζdH = 1.0125) and very high volatility

(ζdL = 0.9125, ζdH = 1.0175) with a transition probability of staying in the good state p = 0.9 and staying in

the bad state q = 0.5 fixed for all the levels that are considered. Across the four panels, we can see that as the

volatility of the demand shock increases, the kink in the blue line occurs for larger values of ΠH , implying that

the ZLB becomes a more relevant concern, even if the economy is currently in the good state.

In the upper left graph of Figure 2.2, we consider a low-volatility scenario. The volatility is relatively low and

hence the severity of the negative preference shock is contained. In this case, there are two equilibria in the good

state of the economy. One equilibrium implies that the nominal interest rate is not constrained (the star mark in

the plot) and the other one is constrained by the ZLB (the square mark in the plot) in the good state.4 In what

follows, we disregard the equilibrium implying that the ZLB is binding in the good state and focus on the other

equilibrium, corresponding to the star mark in the plot. In the upper-left plot, the economy is away from the ZLB.

Furthermore, in this case the negative preference shock is too small to make the ZLB constraint binding in the

bad state. This can be seen by observing that the equilibrium of interest, which is denoted by the star mark in the

graph, lies on the flatter part of the blue line.

We now slightly increase the volatility of the preference shock, which implies that the negative preference

shock is now larger than what it was in the previous case. Now the target equilibrium lies on the steeper part of

the blue line, implying that the economy will go to the ZLB if a negative preference shock will hit tomorrow.

These expectations have important effects on today’s equilibrium outcomes. Now inflation is lower than what it

would have been if the blue line were less steep as in the case in which we do not impose the ZLB constraint (the

dashed-dotted blue line in the graph). We call the lower inflation rate in the good state due to the binding ZLB

constraint in the bad state the deflationary bias. The magnitude of the deflationary bias is shown in the graph.

A further increase in the volatility of the binary preference shock causes the nominal rate and inflation to fall

further, as illustrated in the lower left graph of Figure 2.2. Now the deflationary consequences of hitting the ZLB

in the bad state are even more severe. As a result, the inflation rate in the good state falls further down and the

deflationary bias widens. To respond to this large deflationary bias, the central bank has to drive the nominal

interest rate to the ZLB even in the good state. This can be seen in the graph where the solid blue line intersects

3The mean of the binary random variable ζdt is unchanged when we raise its variance throughout this exercise.
So when we raise the volatility of the preference shock, we effectively make the negative and positive realizations
of the shock bigger.

4This result is reminiscent of the two steady-state equilibria characterized in a perfect-foresight environment
in the influential paper by Benhabib et al. (2001). However, the equilibria in upper left plot are derived in a
stochastic environment where agents take into account the probability that the economy may be hit by preference
shocks in future periods.
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the kink of the red dashed line, implying that the two good-state equilibria now coincide in the graph and the

ZLB is binding in both. Furthermore, note that the deflationary bias is now larger than that in the previous case.

What happens if the volatility increases even further and the realization of the preference shock in the bad

state becomes even worse? The central bank would like to lower the nominal interest rate further in the good state

in order to mitigate the deflationary pressures owing to the severe deflation expected in the bad state. However,

the binding ZLB constraint in the good state prevents the central bank from doing so. As a result, the fall in

inflation expectations combined with the forced inaction of the central bank lead to an increase in the real interest

rate in the good state, which depresses inflation expectations even further. We call this vicious circle of lower and

lower inflation deflationary spirals. In the lower right graph, the blue solid line and the dashed red line do not

intersect, implying that no stable Rational Expectations equilibrium exists.

Three interesting lessons emerge from the analysis carried out in this section. First, the deflationary bias

emerges when agents expect with some probability that the interest rate will become constrained by the ZLB in the

future. Second, the deflationary bias and the deflationary spirals are intertwined: deflationary spirals occur when

the deflationary bias is so large that the central bank cannot prevent inflation expectations from spiraling down.

Third, when the deflationary bias widens over time an off-the-shelf New Keynesian model solved globally in its

nonlinear specification predicts that the economy will eventually slip into a deflationary spiral. This prediction of

the benchmark model used for monetary policy analysis, combined with the fact that the deflationary bias in the

United States has been widening for the past twenty years, should be a reason of concern.

2.4 ZLB Risk and Macroeconomic Biases

The previous section illustrated the origins of the deflationary bias and the link between the deflationary bias

and deflationary spirals. We can now return to our benchmark calibration, which are shown in Table 2.1, with a

continuum of possible realizations for the preference shock.

Hitting the inflation target is more challenging for the central bank when the probability of encountering the

ZLB is non-negligible. Even in tranquil times and away from the ZLB, the mere risk that monetary policy might

become constrained in the future hinders the convergence of inflation to the central bank’s inflation target. This is

because forward-looking price setters anticipate that in case of a large negative shock the central bank will be

unable to fully stabilize inflation due to the ZLB constraint. These beliefs cause inflation expectations to become

disanchored from the central bank’s target and to depress inflation dynamics.

The existence of this deflationary bias constitutes an important anomaly that should concern policymakers.

Failure to acknowledge this anomaly may lead the central bank to conduct expansionary monetary policy that

ends up overheating the economy and creating more macroeconomic biases. These macroeconomic biases are

broadly consistent with the recent performance of the U.S. economy.5 Moreover, the size of these biases increases

exponentially as the volatility of the macroeconomic environment rises and the natural rate of interest declines.

5See Hills et al. (2016) for an empirical investigation of the magnitude of the deflationary bias and the
associated output bias.
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Figure 2.3 The risk of the zero lower bound. Left graph: Expected frequency of the zero lower bound as the variance of
preference shocks varies and for different values of the long-run real rate. The frequency is in percentage points and it is
computed as the ratio between the number of periods spent at the zero lower bound and the total sample size (300,000). Right
graph: Probability of hitting the zero lower bound next period conditional on being at the stochastic steady state in the current
period for different values of the variance of preference shocks and of the steady-state real rate. The probability is expressed
in percentage points.

In the subsequent sections, we will show that the symmetric approach followed by the central bank to inflation

stabilization is responsible for these biases.

Probability of encountering the zero lower bound The left plot of Figure 2.3 shows the percentage of periods

spent at the ZLB when the model is simulated for a long period of time (300,000 periods). In technical jargon,

this is the ergodic probability of being constrained by the ZLB. As shown in the figure, this probability is affected

by how volatile the shocks are (x-axis). The different lines are associated with different assumptions about the

long-run annualized real rate of interest r∗ = β−1. Our benchmark calibration for this parameter is one percent,

which is in line with the FOMC’s projections (SEP) of September 2018. The red stars on the lines denote the

calibrated standard deviation of the preference shock.

A lower long-term real interest rate raises the expected frequency of the ZLB as it shrinks the central bank’s

room of maneuver to counter the deflationary effects of recessionary shocks. We are closer to the bound on

average so the central bank is expected to hit the lower bound more often. Note that the expected frequency of the

ZLB as a function of macroeconomic volatility grows at an increasing speed as the long-term real interest rate r∗

falls. Symmetrically, a given drop in the long term real interest rate r∗ implies larger increases in the probability

of encountering the ZLB if the volatility of the shock is higher. Thus, the more volatile shocks are and the lower

r∗ is, the higher the expected frequency of the ZLB, with the two effects reinforcing each other.

The graph on the right shows how likely it is for monetary policy to become constrained by the ZLB in the

next period conditional on being currently at the (stochastic) steady state. As for the expected frequency of the

ZLB, we study how this probability varies as we change the standard deviation of the preference shocks and the

steady-state real rate of interest r∗. The larger the volatility of the shock, the more likely it is that the ZLB will be

binding in the next period. It should be noted that the probability rises exponentially with the volatility of the

shock. Lowering the long-term real rate of interest leads to similar results.
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The worrying finding highlighted by both graphs is that in a low real-interest rate environment (low r∗, black

dashed lines) the two functions are very steep. This means that even a small increase in the volatility of the

shocks can lead to substantial increases in the probability of encountering the zero lower bound. Recall that our

benchmark calibration for the volatility of the preference shock is arguably very low for the U.S., given that it

was chosen to match the level of volatility during the Great Moderation. The results above imply that even a

small increase in macroeconomic volatility may lead agents to believe that the ZLB constraint has become a

pervasive problem for monetary policy. These beliefs cause serious macroeconomic biases and distortions and

can potentially lead to deflationary spirals.

Deterministic and stochastic steady state To show that inflation fails to converge to the central bank’s target in

the absence of inflationary shocks, it is useful to define the stochastic steady-state equilibrium of the model.6 We

define the deflationary bias as the difference between the rate of inflation at the stochastic steady-state equilibrium

and the central bank’s inflation target, which coincides with the rate of inflation at the deterministic steady state.

The deflationary bias arises when inflation at the stochastic steady state is lower than the central bank’s target. A

large deflationary bias implies serious hurdles for the central bank to hit its inflation objective.

Both the deterministic and stochastic steady states define an economy that has not been hit by shocks for

a sufficiently long number of periods, so that their variables have stabilized around their steady-state values

and do not vary anymore (unless a shock suddenly hits). However, in the deterministic steady state, agents

fail to appreciate the macroeconomic risk due to future realizations of the shocks. Instead, in the stochastic

steady state, agents appreciate the macroeconomic risks due to future realizations of the shocks and adjust their

behavior accordingly. While in a linear model these two concepts of steady-state equilibria lead to the same

macroeconomic outcome, in non-linear models whether agents act in response to future macroeconomic risks

matters.

Unlike the stochastic steady state equilibrium, the deterministic steady-state equilibrium of our model can

be characterized analytically.7 The real interest rate in the deterministic steady state, r∗, coincides with β−1

and captures the long-run level of the real interest rate in the absence of risk. Importantly, r∗ = − ln (β) also

coincides with the deterministic steady state of the natural interest rate. The deterministic steady state of inflation

is pinned down by the inflation target of the central bank, Π, and can be effectively dealt with as a parameter.

Since the price adjustment cost function takes into account the deterministic steady-state inflation rate, the chosen

value of the inflation target does not affect any macroeconomic outcomes either at the deterministic steady state

or away from the deterministic steady state. Thus, the deterministic steady state for output Y is determined by the

level of TFP.

6Some scholars use the terms “risky steady state” to refer to what we call stochastic steady state. See, for
instance, Coeurdacier et al. (2011b).

7As shown by Benhabib et al. (2001), there exist two deterministic steady-state equilibria once the zero lower
bound on nominal interest rates is taken into account. The first steady state is characterized by positive inflation
and a positive policy rate. The second steady state is characterized by a liquidity trap, that is, a situation in which
the nominal interest rate is near zero and inflation is possibly negative. In line with most of the literature studying
new-Keynesian models, we focus on the positive-inflation deterministic steady state.
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Figure 2.4 Macroeconomic distortions due the zero lower bound as the volatility of the preference shocks varies. Left graph:
The inflationary bias due to model’s non-linearities. The red star denotes the calibrated value of the standard deviation of this
shock. The difference between the blue solid line and the black dot-dashed line captures the deflationary effects of a risk
of a recession that pushes the nominal interest rate to its lower bound. Center graph: the same as the left graph but the bias
is computed with respect to output (level). Right graph: the same as the left graph but the bias is computed with respect to
the real interest rate. The gray area marks the region of the values for the standard deviation of the preference which trigger
deflationary spirals. Units: Inflation and real interest bias is measured in percentage points of annualized rates while the output
bias and the standard deviation of the preference shocks are in percent.

Unlike the stochastic steady state, the deterministic steady state is not affected by macroeconomic uncertainty,

which influences the optimal behavior of rational agents in non-linear models. Such volatility drives a wedge

between the outcomes of these two steady-state equilibria and hence fuels the deflationary bias. In this section,

we will show that among the many sources of non-linearity in the model (e.g., the non-linearities that give rise to

precautionary savings), the zero lower bound constraint is the main culprit behind the formation of the deflationary

bias and all the associated macroeconomic biases.

The Deflationary Bias The left graph of Figure 2.4 shows the difference between the inflation rate at the

stochastic steady state and inflation at the deterministic steady state with (blue solid line) and without the zero

lower bound constraint (black dash-dotted line). Comparing the blue solid line with the black dash-dotted line

allows us to isolate the effects of the ZLB constraint on the inflation bias. From the figure, it is easy to conclude

that when removing the ZLB constraint, the gap between the deterministic and stochastic steady state is quite low.

Instead, the risk of hitting the zero lower bound can lead to large discrepancies between the desired and realized

levels of inflation.

The red star denotes the deflationary bias that arises at the benchmark value of the standard deviation of

the preference shock (Table 2.1). Inflation undershoots the central bank’s inflation target by 27 basis points

because of the risk of hitting the ZLB in the future. As the macroeconomic volatility increases, the bias widens

up exponentially. A one-percentage-point increase in the standard deviation of shocks causes a 15-basis-points

reduction in the model’s long-run inflation rate. Furthermore, it would take just a two-percentage-point increase

in the standard deviation of preference shocks to make deflationary spirals possible. Given that our benchmark

calibration reflects a record-low macroeconomic volatility, this result is a reason for concern.

It should also be noted that the steepness of the function of the deflationary bias has to be chiefly imputed to the

presence of the ZLB constraint. Indeed, the slope of the black dash-dotted line, which captures the counterfactual
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case where the ZLB constraint is not enforced and nominal rates are allowed to become negative, is tiny and close

to constant for different values of the standard deviation of the shocks.

What if the central bank realizes that inflation is in general below the desired target and decides to lower its

inflation target to make it coincide with average inflation? The deflationary bias induced by the ZLB constraint

would become even larger because lowering the target would make the probability of encountering the zero lower

bound even larger. We discuss below what the central bank can do to bring inflation in line with the desired target.

The Output Bias The center graph of Figure 2.4 shows the effects of the risk of hitting the ZLB on the long-run

level of output. As before, the long-term output bias due to the zero lower bound is given by the vertical difference

between the blue solid line and solid dashed-dot line, which gives us the bias when the ZLB constraint is not

imposed. The output bias is positive because the central bank has a two percent inflation target but inflation

fluctuates around its stochastic steady state that is lower than the central bank’s target (see the left graph of

Figure 2.4). As a result the central bank keeps the interest rate lower than its deterministic steady-state level to

close the negative inflation gap. Since the central bank applies the Taylor principle (θΠ > 1), this expansionary

monetary policy leads to a negative bias in the real interest rate, as shown in the right graph of Figure 2.4. This

monetary stimulus drives a positive wedge between the level of output at the stochastic steady state and that at the

deterministic steady state.

It should be noted that if we relax the ZLB constraint, there would be a small downward bias to output owing

to precautionary motives. However, the positive bias due to the lower bound constraint dominates these other

effects for our benchmark calibration of the standard deviation of preference shocks, which is marked by the red

star in the plot.

Implications of a Low Natural Interest Rate. The results we have discussed so far rely on the assumption

that the long-run natural rate of interest is fixed and equal to one percent. Now we show that the combination

of a low interest rates environment and the presence of the zero lower bound gives rise to the deflationary bias.

Increasing values of the real rate of interest would mitigate or even completely eliminate the bias on inflation

because it would be less likely that monetary policy will become constrained by the ZLB, as shown in the right

plot of Figure 2.3.

Figure 2.5 precisely illustrates these results by showing the effects of changing both the standard deviation of

shocks and the long-term real rate of interest r∗. The important takeaway from this graph is that as the long-term

real interest rate r∗ increases sufficiently, the long-term inflation and output biases disappear. The intuition is

straightforward: when the long-term real interest rate is higher the central bank has more room to counteract the

deflationary effects of a contractionary shock and hence is less likely to become constrained by the zero lower

bound (see Figure 2.3).

It is worth noting that a slightly lower real interest rate r∗ than that of our benchmark calibration can lead

to deflationary spirals (the gray area). In such an unfavorable state of the world, the central bank loses control

over inflation expectations because the binding ZLB constraint becomes so pervasive that the central bank cannot

prevent inflation expectations from being swallowed by the deflationary spirals, as shown in Section 2.3.
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Figure 2.5 Macroeconomic distortions due the zero lower bound as the standard deviation of preference shocks varies (x-axis)
and for alternative values of the steady-state real rate of interest. Left graph: The inflationary bias due to the zero lower bound
constraint. The red star denotes the calibrated value of the standard deviation of this shock. Center graph: the same as the left
graph but the bias is computed with respect to output (level). Right graph: the same as the left graph but the bias is computed
with respect to the real interest rate. Units: Inflation and real interest bias is measured in percentage points of annualized rates
while the output bias and the standard deviation of the preference shocks are in percent.

Moreover, a higher real rate of interest r∗ would make the function of the deflationary bias less steep and

therefore would increase the threshold of the volatility of shocks that triggers the deflationary spirals. It is also

interesting to notice that an increase in the long-term real rate of interest of one percentage point more than halves

the deflationary bias in our benchmark calibration, denoted by the red star in the graph.

The size of the bias due to non-linearities in the model other than the ZLB does not vary with the long-term

real interest rate (not shown), suggesting that the long-term macroeconomic biases linked to a low-interest-rate

environment is entirely due to one specific source of non-linearity in the New Keynesian model: the zero lower

bound.

To sum up, the deflationary bias brought about by the presence of the ZLB can generate first-order distortions

for a central bank that tries to stabilize inflation around the target. Furthermore, we noticed that the combination of

a low long-term real interest rate, r∗, and moderate macroeconomic risk can trigger the long-run bias in inflation

and output or, even worse, deflationary spirals.

The Unconditional Bias The previous section has shown that even when the economy is at the stochastic

steady-state equilibrium and thus away from the zero lower bound, a deflationary bias arises because of the risk of

encountering the zero lower bound in the future. This, in turn, triggers a bias in the real interest rate, as the central

bank tries to lift inflation closer to the target and drives a wedge between actual output and optimal output. While

the deflationary bias can be defined and measured within the context of a structural model, it cannot be directly

measured in the data. A concept of deflationary bias that can be observed more directly in the data is the average

deflationary bias, which we define as the difference between the model’s unconditional mean of inflation and

inflation at the deterministic steady-state equilibrium (i.e., the central bank’s inflation target Π). This alternative

concept of gap does not only reflect the risk of hitting the ZLB but it also reflects the inflation outcomes observed

when ZLB episodes actually materialize. As such, the unconditional deflationary gap is more closely related to

the bias shown in Figure 2.1 than the concept used in the previous section.
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Figure 2.6 Average macroeconomic biases as the volatility of the preference shock varies. The bias is computed by taking the
mean of inflation, output, and the real interest based on a simulation lasting 1,000,000 periods. We drop the first 100,000
observations to minimize the effects of initial conditions. The biases are reported on the same scale used in Figure 3.

This concept of bias is not only useful as it can be directly measured in the data, but also because it provides

a measure of the unanchoring of long-term inflation expectations. Thus, closing the unconditional deflationary

bias implies that long-term inflation expectations are anchored to the central bank’s target. Achieving this goal

is of paramount importance for a central bank that desires to provide a stable nominal anchor to the public. To

compute the unconditional inflation bias, we simulate the model for several periods and then compute the mean

of the variables of interest. Figure 2.6 reports the average bias as the volatility of the preference shock varies.

The bias is computed by taking the mean of inflation, output, and the real interest based on a simulation lasting

1,000,000 periods. We drop the first 100,000 observations to minimize the effects of initial conditions. The biases

are reported on the same scale used in Figure 2.4.

Importantly for policymakers, the two concepts of bias move closely together in the graph. Therefore, adopting

the asymmetric rule that removes the deflationary bias also allows the central bank to re-anchor long-term inflation

expectations to its two-percent target. It should be noted that the unconditional deflationary bias is even larger

than the deflationary bias shown in Figure 2.4. When computing the unconditional bias, the zero lower bound

is not a mere possibility, but an event that occasionally occurs and, in fact, depresses the dynamics of inflation.

Thus, average inflation is even further away from the desired inflation target because the economy experiences

the deflationary pressures associated with the ZLB period.

This behavior of inflation seems consistent with what is reported in Figure 2.1. In the late 1990s, the conquest

of US inflation was completed. The central bank was successful in convincing agents about the 2% inflation target.

In terms of the model, this event can be captured as convergence toward the stochastic steady state associated

with a 2% inflation target. Such a low target, combined with the low natural rate of interest leads to a deflationary

bias − even if the zero lower bound is not binding − and causes inflation to drift down and away from the desired

2% target. In fact, during those years the Federal Reserve was genuinely concerned about the risk of deflation

(Krugman 2003). With the 2008 recession, the ZLB risk materialized. The model predicts in this case a further

reduction in inflation, as in the data. Finally, as the economy recovers, the model predicts that inflation does not

return to a 2% target, but it stabilizes around a lower value corresponding to the stochastic steady state.
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When it comes to the behavior of output and the real interest rate, the bias is largely gone. When looking

at the average bias for the real interest rate, there is a countereffect that pushes the bias to be positive. This

countereffect is brought about by the presence of the ZLB itself that truncates the left tail of the distribution of the

nominal interest rate. Thus, the negative bias that arises away from the zero lower bound is compensated by the

fact that at the zero lower bound the central bank cannot further lower the interest rate, making the effective real

interest rate too high. Importantly, the two phenomena are just the two sides of the same coin: The negative bias

away from the zero lower bound is generated by the deflationary pressure that arises exactly because at the zero

lower bound the central bank is not able to lower the interest rate to mitigate the fall in inflation.

2.5 The Asymmetric Rule

We have shown that the deflationary bias induced by the ZLB increases when the natural interest rate r∗ declines

or macroeconomic volatility rises. We now turn our attention to what the central bank can do to address the

deflationary bias.

2.5.1 The Policy Proposal

In the academic literature and in policy circles, there has been an ample discussion about the possibility of

increasing the inflation target as a way to avoid the perils of the zero lower bound. An increase in the target would

reduce the possibility of hitting the zero lower bound and the associated bias, as shown by Coibion et al. (2012)

and Schmidt and Nakata (2016). However, Nakamura et al. (2018) show that standard models are unreliable when

it comes to assess the welfare implications for the optimal inflation target. Moreover, policymakers have been

quite reluctant to reconsider the target of inflation because they fear losses of reputation and argue that higher

inflation is historically associated with more volatile inflation. Another line of research has proposed price or

nominal GDP targeting or average-inflation targeting (Mertens and Williams 2019). However, such policies are

perceived as risky because they may require the central bank to engineer a deflation over certain periods of time.

In this paper, we propose a different approach that does not require the central bank to explicitly aim at hitting

a time-varying inflation target. Instead, the central bank reacts less aggressively to positive deviations of inflation

from the target than to negative deviations. We will show that embracing this asymmetric strategy can effectively

remove the deflationary bias.

The policy strategy that we propose implies a smaller response to inflation when inflation is above target.

Specifically, we consider the following modified policy rule:

Rt = max
[

1,
[

1Πt<Π

(
Πt

Π

)θΠ

+ (1 − 1Πt<Π)
(

Πt

Π

)θΠ
](

Yt
Y

)θY
R

]
(2.10)

where θΠ denotes the response of inflation when inflation is below target, θΠ stands for the response to inflation

when inflation is above target, and 1Πt<Π is an indicator function that is equal to one when inflation is below
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Figure 2.7 Macroeconomic biases due to the ZLB constraint as the central bank varies its response to positive deviations of
inflation from target. The inflation bias (left plot), the output bias (center plot), and the real interest rate bias (the right plot)
are computed by taking the difference between these variables at the stochastic steady state and their value at the deterministic
steady state (blue solid line). These biases are also computed as the difference between the unconditional mean of these three
variables and their value at the deterministic steady state (red dashed-dotted line). The response when inflation is below target
is always equal to 2 as in the benchmark calibration. The red star marks the symmetric case in which the central bank responds
with equal strength to inflation or deflation. Units: The inflation and the real interest rate biases are expressed in annualized
percentage points and the output gap in percentage points.

target (Πt < Π). In what follows, we set θΠ = 2 as in the benchmark calibration of Section 2.2.2 and study how

the average and stochastic steady state biases vary in response to changes in θΠ.

The asymmetric rule in equation (2.10) can be interpreted as a strategy according to which the central bank is

slower in raising rates when inflation goes above target. This strategy reduces the risk of encountering the zero

lower bound and its undesirable effects. It is therefore particularly effective in a low interest rates environment,

like the current one, in which the biases on key macroeconomic variables can be sizable.

Figure 2.7 shows how the macroeconomic distortions due to the zero lower bound vary as a function of the

central bank’s response to above-target inflation. We examine the behavior of the bias away from the zero lower

bound (stochastic steady state, blue solid line) and its unconditional mean (red dashed-dotted line). The red

stars denote the distortion under a symmetric rule with a response to inflation equal to two, as in the benchmark

calibration.

We observe that being less aggressive when inflation is above target helps to mitigate all three biases.

Specifically, for a response θΠ around 1.5, the ZLB-driven macroeconomic distortions become negligible. In a

nutshell, to remove the macroeconomic distortions due to the ZLB constraint, policymakers need to be willing to

tolerate inflation above the target for longer periods of time. By raising the long-run inflation expectations, the

asymmetric strategy also makes the deflationary spirals less likely to happen. Graphically, this makes the gray

areas in Figure 2.4 smaller. This is an important point to which we will return in Section 2.5.3.

It is worth emphasizing that this policy effectively reduces the probability of hitting the ZLB. This is reflected

in the reduction of the distance between the inflation target (deterministic steady state) and the stochastic steady

state of inflation. As explained above, in this case, the economy is currently away from the zero lower bound.

The reduction in the bias is therefore a result of a lower risk of hitting the zero lower bound in the future.
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Figure 2.8 Welfare and inflation bias as the response to positive deviations of inflation from target varies in magnitude.
Welfare bias on the left axis is shown by the blue solid line and is reported on the left axis. The inflation bias on the right axis
is shown by the red dashed-dotted line and is defined as the difference between the annualized percentage rate of inflation at
the stochastic steady state and the annualized percentage rate of inflation at the deterministic steady state.

The Asymmetric Strategy Is Not a Makeup Strategy The asymmetric strategy proposed in this paper removes

the deflationary bias because it raises the probability of inflation on the upside and, in doing so, offsets the

downside risk due to the ZLB. Hence, our strategy differs from the so-called makeup strategies (e.g., price-level

targeting, and average inflation targeting) that correct the deflationary bias by committing the central bank to

overheat the economy after the ZLB episodes. Consequently, makeup strategies rely on history dependence which

− it is often argued − makes these strategies hard to communicate to the public.

While both approaches require the central bank to make some sort of commitment, the nature of the commit-

ment is very different. The asymmetric strategy commits the central bank to respond asymmetrically to deviations

of inflation from the central bank’s target with no account for the past dynamics of inflation. The asymmetric

strategy never requires the central bank to engineer an overshooting in inflation or a recession after a period of

above-target inflation. In Appendix B.3, this important property of the asymmetric strategy is illustrated using a

simulation exercise. The challenges in communicating the asymmetric strategy are discussed in the next section.

2.5.2 Welfare Analysis

We evaluate the appeal of the asymmetric strategy by measuring its impact on households’ welfare W0, which

reads as follows:

W0 = E0

∞∑
t=0

βtζdt

[
C1−σ
t

1 − σ
− χ

H1+η
t

1 + η

]
(2.11)

Figure 2.8 shows welfare Wt (left axis) and the inflation bias (right axis). As the central bank deviates from

the symmetric strategy (the red star) by lowering the response to above-target inflation, welfare increases. The

adoption of the asymmetric strategy allows the central bank to mitigate the deflationary bias, raising long-term

inflation expectations and reducing the probability of falling into the ZLB in the future. The diminished risk of

being constrained by the ZLB lowers macroeconomic volatility, improving welfare. When this response is around

1.6, the welfare peaks and then it declines as the response to positive inflation deviations from target is further
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Figure 2.9 The dynamics of welfare, the output gap, and the inflation gap after a two-standard-deviation positive preference
shock hits the economy in period 1. Two cases are reported: the case in which the central bank adopts the optimal asymmetric
rule and conducts an opportunistic reflation of the economy (solid blue line) and the case in which the central bank does not
take this opportunity and sticks to the symmetric rule (red dashed-dotted line). In both cases, the economy is initialized at
its stochastic steady state. Units: Inflation gap is measured in percentage points of annualized rates while the output bias is
expressed in percentage points.

decreased. It should be noticed that to close the deflationary bias, the central bank has to respond more weakly

to inflation than optimal. The asymmetric strategy that completely removes the deflationary bias, is suboptimal

in that it allows too large and persistent positive deviations of inflation from the central bank’s target. To see

this, note that the optimal asymmetric rule solves the following trade-off. On the one hand, by tolerating some

persistent positive deviations of inflation from its target the central bank manages to mitigate the deflationary bias.

On the other hand, the central bank allows larger positive deviations of inflation from its target.

Opportunistic Reflation While we showed in Figure 2.8 that abandoning the symmetric rule to adopt an

asymmetric strategy improves welfare, there may be cases in which it is arguably hard for the central bank to

convince the public that it has adopted an asymmetric strategy. For instance, the central bank could be perceived

to be myopic or unable to fully understand the functioning of the economy. In this case, the central bank needs an

opportunity to show the public its commitment to the new asymmetric rule. The arrival of a shock that pushes

inflation above target is such an opportunity. We call this scenario opportunistic reflation. We now investigate the

implications for welfare and the macroeconomic outcomes of a central bank pursuing an opportunistic reflation.

Let us assume that the economy is initially at the stochastic steady state associated with the symmetric rule

when it gets hit by a positive preference shock that boosts consumption and aggregate demand. The central bank

receives now the opportunity to show to the private sector that it is willing to commit to the optimal asymmetric

rule by responding less aggressively to the inflation consequences of this shock. It is assumed that by observing

the muted response to inflation, the private sector immediately believes that the central bank will follow the

asymmetric rule forever.

In Figure 2.9, we show the impulse response function of welfare and the macroeconomic gaps (inflation and

output) to a two standard deviation positive preference shock under the symmetric rule and under the optimal

asymmetric rule. The output gap is measured in deviations from the flexible price economy whereas the inflation

gap is expressed in deviations from the central bank’s two-percent target. The optimal asymmetric rule raises the
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Figure 2.10 Welfare gains/losses from carrying out an opportunistic reflation as the size of the inflationary shock varies under
different assumptions about how forward looking the central banker is. The left plot shows the myopic central banker’s
case and the different lines refer to different degrees of myopia; that is, the horizon k the central banker cares about when
computing welfare gains/losses. The right plot shows the case of the benevolent central banker who maximizes the households’
utility and thereby cares about the welfare gains at all horizons. Welfare gains/losses are computed as the difference between
the welfare associated with adopting the optimal asymmetric rule and the welfare associated with sticking to the benchmark
symmetric rule in the period when the inflationary shock hits the economy.

output and inflation gaps in the short run relative to the symmetric rule whereas it mitigates the macroeconomic

gaps in the longer run. Welfare is reported in the left graph of Figure 2.9, which shows that the optimal asymmetric

rule raises welfare both in the short run and in the longer run.

Why is welfare higher in every period when the central bank adopts the asymmetric rule even though this rule

causes output and inflation gaps to widen more at the beginning? Welfare does not depend only on the current

inflation and output gaps but it is also affected by the expected discounted stream of welfare gains that will be

accrued over time. The short-term responses of social welfare to a two-standard-deviation positive preference

shock implies that the long-term welfare gains associated with the mitigation of the macroeconomic biases

outweigh the short-term welfare losses.8

The opportunistic reflation involves a trade-off between short-term and long-term macroeconomic stabilization.

Hence, a myopic central bank may refrain from seizing this opportunity as welfare costs are mostly front-loaded.9

To further investigate this issue, we tweak the welfare function (2.11) to study the behaviors of a myopic central

banker who only cares about the welfare gains accrued up to a finite time horizon k. The welfare of the myopic

central banker is denoted by W̃ k
0 , which is defined as follows:

W̃ k
0 = E0

k∑
t=0

βtζdt

[
C1−σ
t

1 − σ
− χ

H1+η
t

1 + η

]
(2.12)

The left plot of Figure 2.10 shows the myopic central bank’s welfare gains from carrying out an opportunistic

reflation following a positive preference shock as the size of the shock varies. The gains are computed by taking

8Under the asymmetric rule, the weaker systematic response to inflation raises agents’ long-run uncertainty
about inflation and hence, everything else being equal, lowers welfare in the long-run. However, in our model
these losses are dominated by the gains from removing the deflationary bias.

9In what follows, a myopic central bank can also be interpreted as a conservative central bank that cares too
much about the short-term inflation consequences of its actions.
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the difference of the welfare under the asymmetric rule and welfare under the benchmark symmetric rule at the

time the inflationary shock hits the economy. The level of asymmetry is the one we find to be optimal for the

non-myopic central banker. The different lines are associated with four degrees of the central banker’s myopia,

which is captured by the relevant horizons k = 4, 8, and 12 quarters. The shorter the horizon k, the more myopic

the central banker. The gains are shown as a function of the size of the shock. The myopic central banker’s gains

decline as the size of the preference shocks increases and, hence, the short-run response of inflation to the shock

is more pronounced. The speed of this decline increases as the myopia of the central banker becomes less severe.

If the relevant horizon is less or equal than four quarters (k ≤ 4), gains are negative for all positive shock sizes.

Such high levels of myopia dissuade the central bank from seizing the opportunity of reflating the economy as the

policymaker is more allured by the short-run welfare gains, which stem from mitigating the immediate inflationary

consequences of the shock. If the myopic central bank has a horizon of two years, it will opportunistically reflate

the economy if the standard deviation of preference shocks is lower than two. Lower degrees of myopia (higher

k) lead the central bank to carry out the opportunistic reflation even when the magnitude of the shock is large and

the likely short-run inflationary consequences of the shock are considerable.

The right plot of Figure 2.10 shows the welfare gains from opportunistic reflation for the case of the

non-myopic/benevolent central banker (k −→ ∞). In this case, the optimal asymmetric rule dominates the

symmetric rule if the size of the shock is less than 6 times the calibrated standard deviations of the shocks (i.e.,

100σζd = 1.175). We consider this value as fairly high, which suggests that opportunistic reflation increases

the economy’s welfare by removing the deflationary bias, as long as the central bank internalizes the long term

benefits of the policy.

Finally, if no opportunity to reinflate the economy occurs, the central bank can implement the asymmetric

strategy by cutting the rate more aggressively when inflation is below target. This action shows to the public

that the central bank has credibly adopted an asymmetric strategy. Appendix B.4 shows that this alternative

asymmetric strategy also removes the deflationary bias by lowering the probability of hitting the ZLB.

2.5.3 Asymmetric Rules and Deflationary Spirals

As already discussed in Section 2.4, adopting an asymmetric strategy does not only remove the deflationary bias

but it also lowers the risk for the economy of experiencing deflationary spirals. Since in our model parameters are

fixed, welfare is not directly affected by this risk. Nevertheless, falling into a deflationary spiral may be very costly

for the economy. The gray areas in Figure 2.11 denote the values of the standard deviation of preference shocks

(upper panels) and the values of the long-term real interest rate (lower panels) that trigger the deflationary spirals

for any given above-target response to inflation (left panels) and for any given below-target response to inflation

(right panels). The bigger the asymmetry in the parameters of the rule, the bigger the macroeconomic uncertainty

(the smaller the real rate of interest) has to be to trigger deflationary spirals. This is because asymmetric rules

make the risk of encountering the ZLB lower.

Mertens and Williams (2019) study a rule according to which the Federal Reserve enforces an upper bound

on the federal funds rate to resolve the deflationary bias. This rule, while correcting the bias, would imply an
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Figure 2.11 Asymmetric Rule and Deflationary Spirals. Upper left plot: the values of the standard deviation of preference
shocks above which deflationary spirals arise as the above-target response to inflation varies and the below-target response is
set to be equal to 2.0. Upper right plot: the value of the standard deviation of preference shocks above which deflationary
spirals arise as the below-target response to inflation varies and the above-target response is set to be equal to 2.0. Lower
left plot: the values of the real long-term interest rate below which deflationary spirals arise as the above-target response to
inflation varies and the below-target response is set to be equal to 2.0. Lower right plot: the values of the real long-term interest
rate below which deflationary spirals arise as the below-target response to inflation varies and the above-target response is set
to be equal to 2.0. The red stars mark the the thresholds for the standard deviation of the preference shock and for the real
interest rate under the benchmark calibration (symmetric rule).

increase in the probability of inflationary spirals because effectively monetary policy becomes passive when

inflation goes above a certain level. Therefore, such a rule reduces the risk of deflationary spirals at the cost of

increasing the risk of triggering inflationary spirals. Instead, our asymmetric rule always implies active responses

to inflation deviations from the target and hence does not expose the economy to the risk of indeterminately large

increases in inflation.

2.6 Target Ranges

In a recent meeting, the FOMC focused on two classes of alternative proposals to revisit the long-run monetary

policy framework. The first class involves dynamic strategies that make up for periods of below-target inflation.

The second class is in line with what advocated in this paper and it includes “those [strategies] that respond more

aggressively to below-target inflation than to above-target inflation,” (minutes of the FOMC meeting, September

17–18, 2019). According to the minutes, several FOMC members also proposed a specific way to implement

the asymmetric strategy: “In this context, several participants suggested that the adoption of a target range for
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Figure 2.12 The target range required to close the deflationary bias. The left plot: the blue line shows the lower and upper
bounds of the range that closes the deflationary bias when the central bank’s in-range response to inflation is zero. The dashed
red line marks the bounds implied by the symmetric target range. The right plot: the blue line shows the upper bound of
the range as the central bank’s in-range response to inflation varies on the horizontal axis. The lower bound of the range is
fixed to 2 percent. The vertical red-dashed line is an asymptote that arises when the in-range response to inflation equals the
above-target response to inflation in the asymmetric rule that removes the deflationary bias.

inflation could be helpful in achieving the Committee’s objective of 2 percent inflation, on average, as it could

help communicate to the public that periods in which the Committee judged inflation to be moderately away from

its 2 percent objective were appropriate.” In what follows, we show that the asymmetric strategy proposed in this

paper can in fact be implemented using target ranges as long as the target range is in itself asymmetric around the

inflation objective.

To illustrate this point, we consider the following policy rule:

Rt = max
[

1,
[

1Πt /∈[ΠL,ΠH ]

(
Πt

Π

)θOΠ
+ (1 − 1Πt /∈[ΠL,ΠH ])

(
Πt

Π

)θIΠ](Yt
Y

)θY
R

]
(2.13)

This policy rule prescribes a different response to deviations of inflation from the objective Π depending on

how far inflation is from the desired level. Specifically, when inflation is inside the target range [ΠL,ΠH ], the

central bank adjusts the interest rate less aggressively than what it does when inflation is outside the target range:

θIΠ < θOΠ .10 Such a rule is arguably easy to communicate. For example, if the in-range response θIΠ is set to zero,

the central bank could simply announce that levels of inflation inside the target range are not reason of concern.

However, an asymmetric target range is required to correct the deflationary bias.

In the left panel of Figure 2.12, we fix the in-range response to inflation to zero (θIΠ = 0), while keeping the

out-of-range response unchanged with respect to the benchmark case (θOΠ = 2). We then report the target ranges

that remove the deflationary bias (the solid blue line). Specifically, for each value of the lower bound of the target

10The target range rule could also be expressed in deviations from the boundaries of the target range. We prefer
this formulation because it nests both a standard Taylor rule and the asymmetric rule presented above.
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range, ΠL, we report on the y-axis the upper bound, ΠH , that corrects the deflationary bias. Thus, the U-shaped

line reported in the panel represents all the pairs [ΠL,ΠH ] such that the deflationary bias is fully corrected.

We start with a lower-bound ΠL equal to 1%. In this case the upper bound needs to be only slightly larger

than 3.5%, implying a modest level of asymmetry around the 2% objective. As the lower bound keeps increasing,

the upper bound starts declining, but the asymmetry always remains. For instance, a target range [1.5%, 2.85%]

would also allow the central bank to remove the deflationary bias. To see this, note that the solid blue curve is

always above the red-dashed line that implies a symmetric target range.

When the lower bound reaches the 2% objective, the upper bound is around 2.7%. Thus, a target region

[2%, 2.7%] is necessary to achieve the 2% objective under the assumption of an in-range response to inflation

equal to zero. To understand why, it is worth emphasizing that a target region with a lower bound equal to the 2%

objective is conceptually very similar to the asymmetric rule presented in Section 2.5. When inflation is below the

objective, the response of the policy rate is strong. When inflation is above the target the response is weaker, but

in a piecewise fashion. In fact, the rule presented in Section 2.5 can also be thought as a degenerate target range

rule in which the upper bound of the target range goes to infinity. The advantage of the target range is arguably

that it preserves the message that excessively high levels of inflation will not be tolerated.

The gray area of the graph denotes values of the lower bound ΠL that are larger than the objective 2%. While

these target ranges also succeed in eliminating the deflationary bias, we believe that they are less interesting

because they are not so easy to communicate: The target range now excludes the inflation objective (ΠL > Π).

Nevertheless, we review this case for completeness. Once the lower bound become larger than the inflation

objective, the upper bound of the target range starts increasing again. This is consistent with the results presented

so far. Recall that in order to correct the deflationary bias, a rule needs to feature more tolerance to high inflation

than to low inflation. When the target range is above the desired objective, higher and higher levels of inflation

become progressively acceptable.

The right panel of Figure 2.12 shows that the amount of asymmetry required to correct the deflationary

bias depends on the strength with which the central bank responds to inflation inside the target range. In this

exercise, the lower bound of the target range is fixed to 2%. On the x-axis, we report different values of the

in-range response to inflation θIΠ. For each of them, the y-axis reports the upper-bound ΠH required to remove

the deflationary bias. When the in-range response is equal to zero, the upper bound is around 2.7%, implying only

a mild level of asymmetry around the 2% objective: [2%, 2.7%]. However, as the in-range response θIΠ increases,

the required level of asymmetry of the target range increases. For example, with an in-range response θIΠ equal

to 1, the required target range becomes: [2%, 3.06%]. This pattern accelerates as the inside-range response is

raised until the blue line approaches a vertical asymptote. The level of asymmetry goes to infinity as the in-range

response θIΠ approaches 1.47 and the target range rule collapses to the asymmetric rule of Section 2.5 that removes

the deflationary bias.

Summarizing, a target range can be an effective way to implement an asymmetric policy strategy. However,

the target range needs to be asymmetric around the desired objective for inflation. The extent of the asymmetry

depends on the response to inflation inside the target range. In the benchmark case of a zero response inside
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the range, we show that the range needed to remove the deflationary bias is only modestly asymmetric. An

asymmetric target range is arguably easy to communicate. For example, if the in-range response is set to zero,

the central bank could simply announce that levels of inflation inside the target range are not reason of concern.

At the same time, a target range allows the central bank to preserve the message that excessively high inflation

will not be tolerated. As such, this asymmetric target range can be viewed as a good compromise between those

policymakers who prefer a hawkish approach toward inflation stabilization and those who hold more dovish

positions.

2.7 Conclusions

In an environment in which monetary policy faces the risk of encountering the zero lower bound, inflation

tends to remain persistently below target, even if monetary policy is not constrained. This is because agents

anticipate the possibility of low inflation in the future. We showed that an asymmetric policy strategy eliminates

the macroeconomic biases due to the ZLB. A strategy according to which the central bank reacts less aggressively

to positive deviations of inflation from the 2% target than to negative deviations can effectively remove the

macroeconomic biases, improve social welfare, and reduce the risk for the economy to fall into highly costly

deflationary spirals.

We argue that convincing agents that the central bank will abandon the old symmetric strategy to embrace the

asymmetric one is non-trivial when inflation is below target. A myopic central banker might put too much wight

on current inflation volatility and stick to the symmetric rule once inflation increases. This lowers the short-run

volatility of inflation, but causes the deflationary bias. A way to overcome this issue is to conduct an opportunistic

reflation. We show that an opportunistic reflation is welfare improving in a standard New Keynesian model.

Nevertheless, the welfare gains are back-loaded and hence the policymaker needs to be sufficiently forward

looking to be willing to conduct an opportunistic reflation. Finally, we showed that the asymmetric strategy can

be implemented with a target range, as long as the target range is in itself asymmetric. A target range is arguably

easy to communicate and allows the central bank to preserve the message that excessively high inflation will not

be tolerated.
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Chapter 3

Reversal Interest Rate and

Macroprudential Policy

Joint with Matthieu Darracq Pariès and Christoffer Kok

Abstract Could a monetary policy loosening entail the opposite effect than the intended expansionary impact

in a low interest rate environment? We demonstrate that the risk of hitting the rate at which the effect reverses

depends on the capitalization of the banking sector by using a non-linear macroeconomic model calibrated to the

euro area economy. The framework suggests that the reversal interest rate is located in negative territory of around

−1% per annum. The possibility of the reversal interest rate creates a novel motive for macroprudential policy.

We show that macroprudential policy in the form of a countercyclical capital buffer, which prescribes the build-up

of buffers in good times, can mitigate substantially the probability of encountering the reversal rate, improves

welfare and reduces economic fluctuations. This new motive emphasizes also the strategic complementarities

between monetary policy and macroprudential policy.

3.1 Introduction

The prolonged period of ultra low interest rates in the euro area and other advanced economies has raised concerns

that further monetary policy accommodation could entail the opposite effect than what is intended. Specifically,

there is a risk that a further monetary policy loosening might have contractionary effects for very low policy rates.

The policy rate enters a "reversal interest rate" territory to use the terminology of Brunnermeier and Koby (2018),

in which the usual monetary transmission mechanism through the banking sector breaks down. We show that

a less well-capitalized banking sector amplifies the likelihood of encountering the reversal interest rate. This

gives rise to a new motive for macroprudential policy. Building up macroprudential policy space in good times

to support the bank lending channel of monetary policy, for instance in the form of a countercyclical capital

67



buffer (CCyB), mitigates the risk of monetary policy hitting a reversal rate territory, or alleviates the negative

implications if it does.

A key feature in understanding the potential threat of a reversal rate is the behaviour of different interest rates,

which are shown for the euro area in Figure 3.1. The ECB deposit facility rate, which determines the interest

received from reserves, and the average deposit rate paid to households co-moved strongly during the 2000s. In

a more technical jargon, there was a (close to) perfect deposit rate pass-through of the policy rate. Afterwards,

the two rates decoupled to some degree, highlighted by the fact that the deposit rate is still positive in 2019,

whereas the ECB deposit facility rate is negative. Inspecting the distribution of overnight deposit rates across

individual euro area banks as shown in Figure 3.1, there is a significant decrease in interest rates across the entire

spectrum of banks since the policy entered negative rates in July 2014. While the banks did not impose negative

rates initially in 2014, an increasing fraction of banks charged sub-zero deposit rates in December 2019. This

emphasizes the changing nature of the deposit rate pass-through, which becomes increasingly imperfect with low

interest rates. In contrast to this, the interest on government bonds, which is shown for the German one year bond

yield as example, followed closely the ECB deposit facility rate. This suggests that the return on government

bonds and central bank reserves, which together constitute a share of close to 25% of banks asset at the end of

2019, was below the interest rate of household deposits. This potentially weakens the balance sheet and limit

monetary policy reductions.

Using a newly developed non-linear general equilibrium model that captures the outlined stylized facts,

we demonstrate the conditions where a reversal rate could materialize. The proposed model is embedded in a

quantitative New Keynesian model. Three key features characterising the banking sector are instrumental for

generating situations where a reversal rate may emerge. First, banks are assumed to be capital constrained which

implies that shocks to their net worth can give rise to financial accelerator effects through the bank lending

channel. Second, the deposit rate pass-through of policy rates is imperfect to capture monopoly power in the

banking sector. Importantly, the degree to which policy rates are passed-through to deposit rates depends on

the interest rate level. While the banks have market power for the deposit rate in good times, the market power

depletes if the policy rate approaches a negative environment and the pass-through declines, which therefore has a

negative impact on banks’ net worth. Third, the banks face requirements to hold liquid assets (i.e. government

bonds) for a fraction of their funding (i.e. deposits), on which the return is assumed to equal the policy rate. The

requirement for liquid assets reflects both monetary policy and regulatory considerations.1 The key implication of

these frictions is that effect of a monetary policy loosening is ambiguous in a low interest rate environment.

In particular, the bank lending channel is state-dependent and the transmission of shocks is asymmetric. A

lowering of the policy rate in a low interest rate environment has only a modest impact on the deposit rates due to

the imperfect pass-through. Therefore, the positive impact on aggregate demand is modest. At the same time, a

1In relation to monetary policy, banks are required to hold minimum reserves at the central bank. The minimum
reserve requirements aim at stabilising money market interest rates and creating (or enlarging) a structural liquidity
shortage, but also may reflect a need for maintaining at all times a certain amount of eligible (non-encumbered)
securities on their books in order to be able to participate in the central banks open market operations. On
the regulatory side, liquid asset holdings are needed to comply with minimum liquidity requirements (e.g. the
Liquidity Coverage Ratio and the Net Stable Funding Ratio).
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Figure 3.1 The upper panel shows the ECB deposit facility rate, average household deposit rate in the euro area and the
German 1Y bond yield. The lower panel shows the distribution of overnight household deposit rates across banks. Details are
in the Appendix C.2.

reduction of the policy rate lowers the return on banks’ government asset holdings and reduces their net worth.

If the latter channel is the dominant one for the banking sector’s profitability, lending is reduced despite the

monetary policy loosening. Therefore, the model features an endogenous reversal interest rate. As a consequence,

the expansionary effect of a monetary policy lowering diminishes continuously with lower interest rates until it

reverses. Importantly,

We solve the model with global methods to capture the described non-linearities and to pin down the reversal

interest rate of the model. This approach also allows to formalize that the expansionary impact of monetary policy

rate cuts is successively diminished until they become ineffective and reverse in a sufficiently low interest rate

environment In other words, a monetary policy accommodation has a different impact if the interest rate is for

example at −0.5%, −0.25%, 0% or 0.25%. The implication is that a larger policy rate reduction is necessary to

get the same intended effect for monetary policy in a low interest rate environment, conditional on having even

enough space left before approaching the reversal interest rate.

The main novelty in our paper is that the role of macroprudential policy in this reversal interest rate environ-

ment is discussed. We incorporate macroprudential policy in the form of a countercyclical capital buffer that can

impose additional capital requirements. The Basel Committee on Banking Supervision prescribes that the buffer

is created during a phase of credit expansion and can then subsequently be released during a downturn. The buffer
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is asymmetric as it is state-dependent and restricted to be non-negative. We incorporate the outlined non-linear

framework in our model. We demonstrate that macroprudential policy can lower the probability of hitting the

reversal interest rate and alleviate the impact of the imperfect deposit rate pass-through. The banking sector

builds up additional equity in good times, which can then subsequently be released during a recession. Having

accumulated additional capital buffers during good times, the negative impact of monetary policy loosening on

bank balance sheets is then dampened in a low interest rate environment. Consequently, monetary policy becomes

more effective during economic downturns and the reversal interest rate is less likely to materialise, which

improves overall welfare. In the context of a "lower for longer" interest rate environment, the risk of entering a

reversal interest rate territory creates a new motive for macroprudential policy as it can help to strengthen the

bank lending channel. We thereby provide evidence of important strategic complementarities between monetary

policy and macroprudential policies.

We calibrate the model to match salient features of the euro area economy for the current low interest rate

environment. The model predicts that the reversal interest rate is located around minus one percent per annum.

The policy rate enters this territory with a probability of 2.7 percent. Macroprudential policy in the form of a

countercyclical capital buffer rule makes it less likely that the reversal interest rate constrains monetary policy. In

particular, the welfare optimising capital buffer rule reduces the probability to be at or below the reversal rate by

around 26%. It also lowers the frequency of negative rates and the economic fluctuations. This illustrates that

macroprudential policy can be a crucial tool in repairing the bank lending channel of monetary policy in a low

interest rate environment.

The paper builds on recent theoretical contributions that connect negative interest rates and its impact on

the bank lending channel. The model closest to ours is the seminal contribution of Brunnermeier and Koby

(2018). We share that the reversal interest rate is endogenously determined in an economy with an imperfect-pass

through. The main difference is that our model features macroprudential policy. Therefore, we can assess if

macroprudential policy can help to restore the bank lending channel. In addition to this, the mechanism that

generates the reversal interest rate differs. While in our model banks’ holdings of government assets can generate

a reversal interest rate, the role of maturity transformation is the main focus in Brunnermeier and Koby (2018).

Eggertsson et al. (2019) show the importance of reserve holdings for the bank lending channel with negative

interest rates. If the policy rate and deposit rates are disconnected, the bank’s profitability is hurt. They consider

an environment in which the deposit rates face a zero lower bound instead of an imperfect pass through. Their

model implies that a negative interest rate cannot be expansionary, while in our framework the impact of policy

rate adjustment depends on the endogenously determined reversal rate. Ulate (2019) emphasizes the trade-off

between increasing demand and reducing bank profitability for negative interest rates. We demonstrate that

this assessment gives a new motive for countercyclical macroprudential policy. Sims and Wu (2020) connect

the size of the central banks’ balance sheet to the impact of negative interest rates. In addition to these studies,

De Groot and Haas (2020) show that negative interest rates can be used as a signal about future monetary policy.

Balloch and Koby (2019) highlight the long run consequences of low bank run profitability in a low interest rates

environment. Another major difference to the previous mentioned studies is that we solve our framework in its
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non-linear specification with global methods. This approach allows us to locate and capture effects of the reversal

interest rate.

This paper is also related to the large literature about the interaction between monetary policy and macropru-

dential policies.2 Whereas the role of the CCyB has been one of the main instruments in the literature, as a new

feature, we incorporate the asymmetric design of the CCyB in our model using an occasionally binding policy

rule. Van der Ghote (2018) shows the importance of a non-linear economy for the coordination of monetary

and macroprudential policies. His work focuses on occasionally binding financial constraints, while our model

contains a reversal interest rate.3 Farhi and Werning (2016) consider monetary and macroprudential policy in

economies with a zero lower bound. They show the importance of macroprudential policy in an environment

with a binding zero lower bound. Korinek and Simsek (2016) consider macroprudential policies that target the

indebtedness of households in an economy where the interest rates are bounded at zero. They highlight the

importance of ex-ante macroprudential policy. Lewis and Villa (2016) demonstrate that a countercyclical capital

requirement can mitigate the output contractions in the presence of a zero lower bound. In addition to this, the

financial system also directly influences the interest rate. Guerrieri and Lorenzoni (2017) point out that a credit

crunch lowers the interest rate in the short and long run. Van der Ghote (2020) stresses that macroprudential policy

can contain systemic risk in economies with low interest rates as it affects the risk-free interest rate. In contrast to

these studies, we assess macroprudential policy in a negative interest rate environment, where the intended effect

of monetary policy can endogenously reverses. This creates a new strategic complementarity between negative

interest rates and macroprudential policy. Macroprudential policy can help to restore the transmission of the bank

lending channel.

The model is based on studies that incorporates financial frictions in dynamic stochastic general equilibrium

model. First, we incorporate a bank leverage constraint as in Gertler and Kiyotaki (2010) and Gertler and Karadi

(2011). Second, the framework features imperfect pass through of the policy rate. Imperfect banking sector

competition affects the transmission of monetary policy and hence the macroeconomic propagation, as shown in

Darracq-Pariès et al. (2011) and Gerali et al. (2010). Finally, we introduce a demand for banks to hold for a certain

share of government assets on their balance sheet along the lines of Curdia and Woodford (2011) and Eggertsson

et al. (2019). Our contribution is to combine these features in a non-linear general equilibrium framework. Based

on this model, the optimal lower bound on monetary policy can be endogenously determined.

The paper is also connected to the empirical literature regarding negative policy rates. Jackson (2015) and

Bech and Malkhozov (2016) document the early experiences with negative policy rates and find that a negative

policy rate has a limited pass-through. Heider et al. (2019) document that negative policy rates impact bank

lending in the euro area. Banks are reluctant to pass through the policy rates to their depositors, which results in

less lending for banks that depend heavily on deposit funding. Basten and Mariathasan (2018) also document the

2See for instance Darracq-Pariès et al. (2011), Lambertini et al. (2013), Angelini et al. (2014), Quint and
Rabanal (2014), Rubio and Carrasco-Gallego (2014), Benes and Kumhof, 2015, Collard et al. (2017), De Paoli
and Paustian (2017), Gelain and Ilbas (2017), among many others.

3We do not incorporate an occasionally binding financial constraint to clearly identify the impact of the
imperfect deposit rate pass-through and the government asset holdings.
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limited pass-through of negative interest rates using supervisory data from Switzerland. Altavilla et al. (2019) and

Eisenschmidt and Smets (2019) outline that banks can charge negative interest rates on some portion of their

deposits. Ampudia and Van den Heuvel (2018) show that the impact of an unexpected interest rate varies with the

level of the interest rate due to the imperfect deposit rate pass-through. Our model incorporates the imperfect

pass-through in a low interest rate environment in a structural macroeconomic model to determine the reversal

interest rate and its interaction with macroprudential policy.

The paper is organized as follows. In Section 2, the non-linear macroeconomic model is introduced. We

calibrate the model and parametrize the imperfect-deposit rate pass through in Section 3. In Section 4, we study

the non-linear transmission of shocks and analyze the reversal interest rate. The optimal endogenous lower bound

on monetary policy is derived. In Section 5, we incorporate macroprudential policy and study its interaction with

the reversal interest rate. We conclude in Section 6.

3.2 The Model

The setup is a New Keynesian macroeconomic framework with a capital-constrained banking sector giving rise to

financial accelerator effects as in Gertler and Karadi (2011). We embed two further financial frictions in this model

that enable the possibility of a reversal interest rate: i) an imperfect pass-through of monetary policy to deposit

rates as in Brunnermeier and Koby (2018) and ii) a reserve and liquidity requirement for the banking sector which

generates substantial government asset holdings as in Eggertsson et al. (2019). The degree of the pass-through

of the monetary policy rate to deposit rates depends on the level of interest rate. In particular, the pass-through

declines if the monetary policy rate approaches a negative interest rate territory. Consequently, monetary policy

is less effective in a low interest rate environment. At the same time, the reserve requirement forces the banks

to hold a fraction of their deposits as government bonds. The fact that banks hold liquid government assets is

motivated both by the reserve requirements for monetary policy purposes and by regulatory liquidity constraints.

With regard to monetary policy operations, the reserve holdings relate to the standard central bank minimum

reserve requirements. On the regulatory side, liquid asset holdings are needed to comply with minimum liquidity

requirements such as the Liquidity Coverage Ratio and the Net Stable Funding Ratio.4 The return on government

assets is assumed to have a perfect pass-through of the policy rate.

The implication of these two features is that when the policy rate is reduced to a sufficiently low level, the

spread between the policy rate and deposit rate turns negative thereby suppressing bank net worth. Likewise,

the reserve requirement generates profits during normal times, it can create losses during a recession. As banks

become more capital constrained, they start to reduce credit. Therefore, the impact of monetary policy is state-

dependent in this setup. The bank lending channel of monetary policy can break down and even reverse. The

combination of these elements generates the possibility of a reversal interest rate that can have a sizable impact

on the economy. To capture these state-dependencies, we are solving the model in its non-linear specification.

4Given the typically low risk weights on such liquid instruments, banks may also have an incentive to hoard
them on the balance sheet to retain a solid capital ratio.
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3.2.1 Model Description

Households The representative household is a family with perfect consumption insurance for the different

members. The family consists out of workers and bankers with constant fractions. The workers elastically supply

labor to the non-financial firms, while the bankers manage a bank that transfers its proceedings to household.

Additionally, the household also owns the non-financial firms and receives the profits.

The household can hold deposits at the bank for which they earn the predetermined nominal rate RDt . In

addition to this, the return also depends exogenously on the risk premium shock ηt, which follows an AR(1)

process and is based on Smets and Wouters (2007). This shock is shown to be empirically very important to

explain the great recession and zero lower bound episodes in estimated DSGE.5 This shock creates a wedge that

distorts the choice of deposits as it affects the decision between consumption and saving. At the same time, the

risk-premium shock impacts the refinancing costs of the banking sector as it alters the payments on the deposits

to the households. Its structural interpretation is further outlined in Appendix C.3.

The nominal budget constraint reads as follows:

PtCt = PtWtLt + Pt−1Dt−1R
D
t−1ηt−1 − PtDt + PtΠP

t − Ptτt (3.1)

where Pt is an aggregate price index, Ct is consumption, Wt is the wage, Lt is labor supply, Dt are the deposits

and ΠP
t are the real profits from the capital good producers, retailers and transfers with the banks and τt is the

lump sum tax.

The household maximizes its utility that depends on consumption and leisure:

Et

∞∑
t=0

βt

[
C1−σ
t

1 − σ
− χ

L1+φ
t

1 + φ

]
(3.2)

The first-order conditions are given as:

βRDt ηtEt
Λt,t+1

Πt+1
= 1

χLφt = C−σ
t Wt

where Λt−1,t = C−σ
t /C−σ

t−1 and Πt is gross inflation. The risk premium shock creates a wedge in the Euler

equation. An exogenous increase in the risk premium leads to a higher return on deposits. This induces the

households to increase their deposit holdings and to postpone consumption, which lowers aggregate demand.

Banking Sector The banks’ role is to intermediate funds between the households and non-financial firms.

They hold net worth nt and collect deposits dt from households to buy securities st from the intermediate good

5For instance Barsky et al. (2014) and Christiano et al. (2015) show this using linearized medium-sized DSGE
models, among others. Gust et al. (2017) and Atkinson et al. (2019) are examples of estimated non-linear models
featuring this shock.
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producers at the real price Qt and reserve assets at from the government. The flow of fund constraint in nominal

terms is

QtPtst + Ptat = Ptnt + Ptdt (3.3)

where the small letters indicates an individual banker’s variable, while the capital letter denotes the aggregate

variable. The banker earns the stochastic return RKt+1 on the securities and pays the nominal interest RDt as well

as risk premium for the deposits. The reserve assets earn the nominal gross return RAt , which is the policy rate.

Leverage is defined as securities over assets:

ϕt = Qtst
nt

To accrue net worth, the earnings are retained:

Pt+1nt+1 = RKt+1QtPtst +RAt Ptat −RDt ηtPtdt (3.4)

which can be written in real terms as

nt+1 =
RKt+1Qtst +RAt at −RDt ηtdt

Πt+1
(3.5)

The banker closes its bank with an exogenous probability of 1 − θ and transfers the accumulated net worth to

households in case of exit. Therefore, the bankers maximize its net worth:

vt(nt) = max
st,dt,at

(1 − θ)βEtΛt,t+1

(
(1 − θ)nt+1 + θvt+1(nt+1)

)
(3.6)

The banker is subject to an agency problem, which imposes a constraint on the leverage decision. The banker can

divert a fraction λ of the banks assets as in Gertler and Kiyotaki (2010) and Gertler and Karadi (2011). Since this

fraction cannot be recovered by the households, funds are only supplied if the banker’s net worth exceeds the

fraction λ of bank assets. Furthermore, the banker faces a requirement to hold a certain amount of government

assets that cover at least a fraction δB of the deposits. This requirement is meant to capture both regulatory

liquidity constraints and the reserve requirements for monetary policy purposes.6 The two constraints can be

summed up as:

vt(nt) ≥ λ(Qtst + at) (3.7)

at ≥ δBdt (3.8)

6Curdia and Woodford (2011) and Eggertsson et al. (2019) use a function in which reserves lower the
intermediation costs of the banks. The regulatory liquidity requirement is not explicitly modeled but provides an
additional motivation for banks to hold substantial amounts of liquid government bonds and other assets on their
balance sheets.
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The banker’s problem is given as:

ψt = max
ϕt

µtϕt + νt (3.9)

s.t. µtϕt + νt ≥ λ
( 1

1 − δB
ϕt − δB

1 − δB

)
(3.10)

where we define ψt = vt(nt)
nt

and assume that the reserve ratio at = δBdt is binding and discussed later. µt is

expected discounted marginal gain of expanding securities for constant net worth, νt the expected discounted

marginal gain of expanding net worth for constant assets and Rt is the deposit rate adjusted for the holding of

reserve assets:

µt = βEtΛt,t+1 (1 − θ + θψt)
RKt+1 −Rt

Πt+1
(3.11)

νt = βEtΛt,t+1 (1 − θ + θψt)
Rt

Πt+1
(3.12)

Rt = (ηtRDt ) 1
1 − δB

−RAt
δB

1 − δB
(3.13)

The banker’s leverage maximization results in an optimality condition:

ξt = λ/(1 − δB) − µt
µt

(3.14)

where ξt is the multiplier on the market-based leverage constraint in the banker’s problem. This constraint is

binding if 0 < µt < λ/(1 − δB), which requires that the return on the security is larger than the combined

interest rate adjusted for inflation Et(RKt+1 −Rt)/Πt+1 ≥ 0. The reserve asset ratio is binding as long as the

expected return of the security is larger than the policy rate adjusted for inflation Et(Rkt+1 − RAt )/Πt+1 ≥ 0.

Both constraints are binding at the relevant state space, which we verify numerically.

The individual leverage ϕt does not depend on bank specific components so that it can be summed up over

the individual bankers, that is:7

QtSt = ϕtNt (3.15)

The aggregate evolution of net worth Nt is the sum of the net worth of surviving bankers NS
t and newly entering

banks that NN
t that receive a transfer from the households:

Nt = NS
t +NN

t (3.16)

NS
t = θNt−1

RKt −Rt−1ϕt−1 +RDt−1
Πt

(3.17)

NN
t = ωN

St−1

Πt
(3.18)

7Similarly, the leverage ratio associated with reserve assets does not depend on bank specific components.
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Non-financial Firms The non-financial firms are the intermediate good producers, retailers subject to Rotem-

berg pricing and capital good producers.

Intermediate good producers produce output using labor and capital:

Yt = APKα
t−1L

1−α
t (3.19)

where AP is the productivity. It sells the output at price PMt to the retailers. It pays the labor at wage Wt. The

firm purchases capital at market price Qt−1 in period t− 1, which is financed with a loan from the bank. It pays

the state-contingent interest rate RKt to the banks. Thus, the maximization problem of the firm can be written as

max
Kt−1,Lt

∞∑
i=0

βΛt,t+1

[
PtP

M
t Yt + PtQt(1 − δ)Kt−1 −RKt Pt−1Qt−1Kt−1 − PtWtLt

]
(3.20)

This gives the nominal rate of return on capital:

Rkt = (Pmt αYt/Kt−1 + (1 − δ)Qt)
Qt−1

Πt

The final good retailers, which are subject to Rotemberg pricing, buy the intermediate goods and bundle them

to the final good using a CES production function:

Yt =
[∫ 1

0
Yt(f)

ϵ−1
ϵ

] ϵ
ϵ−1

(3.21)

where Yt(f) is the demand of output from intermediate good producer j. Cost minimization implies the following

intermediate good demand:

Yt(f) =
(
Pt(f)
Pt

)−ϵ

(3.22)

where the price index Pt of the bundled good reads as follows

Pt =
[∫ 1

0
Pt(f)1−ϵ

] 1
1−ϵ

(3.23)

The retailer then maximizes its profits

Et

{ ∞∑
t=0

[(
Pt(f)
Pt

−MCt

)
Yt(f) − ρr

2 Yt

(
Pt(f)

Pt−1(f)Π − 1
)2]}

(3.24)

76



where MCt = PMt and Π is the inflation target of the central bank. This gives us the New Keynesian Phillips

curve:

(
Πt

Π − 1
)

Πt

Π = ϵ

ρr

(
Pmt − ϵ− 1

ϵ

)
+ βEtΛt,t+1

Yt+1

Yt

(
Pit+1

Πt
− 1
)

Πt+1

Π

Capital good producers have access to the function Γ(It,Kt−1) which they can use to create capital out of an

investment It. The capital is then sold so that the maximization problem reads as follows:

max
It

QtΓ(It,Kt−1)Kt−1 − It (3.25)

The real price of capital is then given as

Qt = [Γ′(It,Kt−1)Kt−1]−1

The stock of capital evolves then as:

Kt = (1 − δ)Kt−1 + Γ(It,Kt−1)Kt−1 (3.26)

Monetary Policy and Imperfect Deposit Rate Pass Through The central bank sets the nominal interest rate

for the reserve asset. It responds to inflation and output deviations, while it faces iid monetary policy shock ζt.8

Furthermore, the central bank can set a lower bound R̃A that restricts the level of the interest rate. The policy rule

reads as follows:

RAt = max

RA(Πt

Π

)θΠ(
Yt
Y

)θY
, R̃A

 ζt (3.27)

The lower bound gives the central bank the opportunity to endogenously restrain itself from lowering the policy

rate below a specific rate as the model features a potential reversal interest rate. This level could be a negative or

positive net interest rate as we will later determine based on welfare considerations. In contrast to this, a zero

lower bound exogenously restricts the central bank from setting a negative net interest rate.

However, there is an imperfect pass-through of the policy instrument to retail deposit rates as in Brunnermeier

and Koby (2018). The margin on the deposit varies with the level of the policy rate RAt . The nominal interest rate

on deposits is given as

RDt = ω(RAt ) (3.28)

8The advantage of an iid monetary policy shock is to avoid that the monetary policy shock could be used as a
device to keep interest rates low for long and influence the economy via future expectations. De Groot and Haas
(2020) discuss such a signaling channel in a negative interest rate environment.
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where ω(RAt ) is a flexible functional form that can be fitted to the observed pass-through in the data. This

approach can capture the varying market power of banks in setting the deposit rate. In particular, it can help to

match the declining pass-through if the policy rate approaches low and negative interest rates. The functional

form and the parameterization with the help of non-linear least squares are described in Section 3.3.

Government and Resource Constraint The government has a balanced budget constraint. It holds the reserve

assets and taxes the households with a lump sum tax:

Ptτt + PtAt = RAt−1Pt−1At−1 (3.29)

The resource constraint is:

Yt = Ct + It + ρr

2

(
Πt

Π − 1
)2

Yt (3.30)

3.2.2 Competitive Equilibrium

The competitive equilibrium is defined as a sequence of quantities{
Ct, Yt,Kt, Lt, It, Dt, St,ΠP

t , Nt, N
E
t , N

N
t

}∞
t=0, prices

{
Rt, R

D
t , R

A
t , R

K
t , Qt,Πt,Λt,t+1, wt, it, i

D
t , P

M
t

}∞
t=0,

bank variables {ψt, νt, µt, ϕt}, and exogenous variable {ηt}∞
t=0 given the initial conditions

{K−1, R−1D−1, η−1} and a sequence of shocks {eηt , ζt}∞
t=0 that satisfies the non-linear equilibrium

system of this economy provided in Appendix C.1.

3.2.3 Global Solution Method

The model is solved in its non-linear specification with global methods. This approach is necessary to capture the

state-dependency of the monetary policy pass-through. In particular, this setting allows monetary policy to have a

different quantitative as well as qualitative impact depending on the state of the economy. Another advantage of

the non-linear approach is that agents take future uncertainty into account, which is particularly relevant due to the

highly non-linear region of low and negative interest rates. The solution method is time iteration with piecewise

linear policy functions based on Richter et al. (2014). The algorithm is described in more detail in Appendix C.5.

3.3 Calibration

The model is calibrated to the euro area economy with a particular emphasis on the current low interest rate

environment. The considered horizon begins with 2000Q1 and ends in 2019Q4. The data to parametrize the

model is mostly based on the ECB’s statistical data warehouse and the AWM database, which is built for the

ECB’s large scale DSGE Model the Model II.9 Appendix C.2 contains the details regarding the data sources and

construction.

9The AMW database provides data only until 2017Q4.
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Table 3.1 Calibration

Parameters Sign Value Target
a) Preferences, Technology and Monetary Policy
Discount Factor β 0.9975 Risk free rate = 1% p.a.
Risk Aversion σ 1 Risk Aversion = 1
Disutility of labor χ 12.38 SS Labor Supply = 1/3
Inverse Frisch labor elasticity φ 1.5 Frisch Elasticity = 0.75
Capital production share α 0.33 Capital income share = 33%
Capital depreciation rate δ 0.025 Annual depreciation rate = 10%
Elasticity of asset price ηi 0.25 Elasticity of asset price = 25%
Investment Parameter 1 ai 0.5302 Q = 1
Investment Parameter 2 bi −0.0083 Γ(I/K) = I
Elasticity of substitution ϵ 11 Market power of 10%
Rotemberg adjustment costs ρr 1000 1% slope of NK Phillips curve
Inflation Π 1.0047 Inflation Target = 1.9% p.a.
Inflation Response κπ 2.5 Standard
Output Response κY 0.125 Standard
Endogenous Lower Bound R̃A 0.995 Lower bound of -2% p.a.
b) Deposit Rate Pass Through
Pass Through Parameter 1 ω1 −0.0008 Perfect pass through at SS
Pass Through Parameter 2 ω2 0.0027 Markdown RA = R̄A = 0.056% p.a.
Pass Through Parameter 3 ω3 124.73 Imperfect pass through if RA < R̄A

Banks Market Power ς 0.001 Markdown if RA > R̄A = 0.056% p.a.
c) Financial Sector
Reserve Asset Requirement δB 0.2545 Government asset share = 23% if RA < 1
Survival Probability θ 0.9 RK −RD = 2% p.a.
Diversion Banker λ 0.1540 Leverage = 8
Proportional transfer to new banks ωN 0.00523 Uniquely determined from θ and λ
d) Shocks
Persistence Risk-Premium Shock ρη 0.75 Probability of negative policy rate
Std. Dev. Risk Premium Shock ση 0.125% Standard deviation of detrended output = 0.021
Std. Dev. Monetary Policy Shock σζ 0.0001 Small value to avoid distortion

Table 4.1 summarizes the calibration. The discount factor is set set to 0.9975 which corresponds to a risk

free rate of 1% per annum. This is in line with the average estimate of 1.27 for the euro area from Holston et al.

(2017).10 The inflation target is set to 1.9 % percent to match the ECB’s inflation target of close but below 2

percent. The Frisch Labor Elasticity 1/ψ equals 0.75 to match the evidence provided in Chetty et al. (2011).

The disutility of labor aims that agents work 1/3 of their time. The parameter α is set to 0.33 in line with the

capital share of production. The depreciation rate is 0.025 to match an annualized depreciation rate of 10%.

The elasticity of the asset price is parameterized to 0.25 as in Bernanke et al. (1999). We target a mark-up of

10% so that ϵ = 11. The Rotemberg parameter ρr = 1000 implies a 1% slope of the New Keynesian Phillips

curve. The inflation and output response are set to 2.5 and 0.125, which are standard values in the literature. The

endogenous lower bound R̃A = 0.995 limits the potential interest rate cuts. The monetary authority does not

lower the systemic component of the policy rate below minus two percent per annum.

10Even though our value is slightly lower, this accounts for the trend of falling real interest rates.
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Deposit Rate Pass-Through The pass-through is parameterized using data of bank retail deposit rates and

the policy rate for the euro area. We use a weighted measure of different deposit rates to take into account the

different maturities in the data. The policy rate is defined as the deposit facility rate. The evolution of both series

can be seen in the upper panel of Figure 3.1. The imperfect deposit rate pass-through in the model is captured

in the equation RDt = ω(RAt ). For this mapping, we follow the functional form in Brunnermeier and Koby

(2018). This function separates the connection between the two rates in a region with an imperfect pass through

(RAt < R̄A) and a region with a perfect pass through (RAt ≥ R̄A), where the threshold parameter R̄A is the

deterministic steady state of the policy rate. The functional form is given as

RDt = ω(RAt ) =

 ω1 + ω2 exp(ω3(RAt − 1)) + 1 if RAt < R̄A

RAt − ς else
(3.31)

where ω1, ω2 and ω3 determines the shape of the imperfect deposit pass through and ς is related to banks market

power.

We parametrize this functional form to capture the varying deposit rate pass-through for the euro area

economy. Figure 3.2 shows the fit of the functional form with the actual data, where we use an approach that also

incorporates non-linear least squares. Specifically, the shape parameters are calibrated to minimize the distance

between the connection of the policy and deposit rate. This approach uses the observations that are below the

threshold R̄A. Furthermore, we impose two restrictions on this minimization. First, there is a perfect deposit

rate pass-through at the steady state.11 Second, the markdown at the steady state is 0.56% in annualized terms.

For the markdown, we use the measured average spread between the deposit rate and the deposit rate facility

conditional on being at or above the steady state. This also gives the markdown for the region with perfect

pass-through ς = 0.0014. We then fit the curve using a non-linear least square approach that incorporates the

described constraint. The details are in the Appendix C.2.2. The fitted values of ω1, ω2 and ω3 are −0.0008,

0.0027 and 124.73.

Banking sector We calibrate the financial friction parameter λ to match a leverage ratio of 8. The banks have

to hold at least a fraction δB of their deposits as government assets. Different measures of government asset

shares in the banks’ balance sheet can be compared in the lower panel of Figure 3.3. The different shares are

government bonds only, government bonds plus required reserve assets and government plus reserve assets. We

match the model to the broadest measure as our requirement captures government bonds as well as reserve assets.

According to this measure, since the introduction of negative interest rates in the euro area in 2014 the share of

government assets to total banking sector assets has edged up to almost 25%. In line with this, we target that

banks have a government asset share of 23% during periods of negative interest rates. The corresponding value

for the fraction of deposits is then 0.2545. The banker’s survival rate θ is set to 0.9 to get an average spread

between the return on capital and deposit rate of 2% p.a. at the steady state similar to the New Area Wide Model

II. The average spread between the lending rate and deposit rate is around 2.5% p.a. in the data. However, there

11This implies that the derivative of the function at the steady state equals 1.
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Figure 3.2 Figure shows the deposit rate pass-through estimated with non-linear least squares. The blue line is the imperfect
pass-through, the black dashed line is a scenario with a perfect pass-through and the red dots refer to the data points.

is a maturity mismatch in the data as loans are more long-term. Moreover, the survival probability θ and the

financial friction parameter λ uniquely determine the endowment to new bankers ωN .
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Figure 3.3 Figure shows different measures of the share of government assets in the banks balance sheet.

Shocks The risk premium shock is parameterized to match the fluctuations in output and the frequency of a

negative interest rate environment. We set the standard deviation ση to 0.125% and the persistence to 0.75. The
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model predicts a standard deviation of 2.2% for output in line with the data.12 The policy rate falls below minus

one percent with a 2.7% probability. A negative policy rate occurs with a probability of 5% in the model. A caveat

is that the model underestimates the materialization of a negative policy rate compared to the recent experience in

the euro, where the policy rate entered negative territory for the first time in June 11 in 2014 and is still below zero

in the last quarter of 2019. To increase substantially the episodes with negative interest rates poses a problem for a

model featuring a zero lower bound as shown in Bianchi et al. (2019) and Fernández-Villaverde et al. (2015). The

reason is that too prolonged episodes in which monetary policy is not effective affect the stability of the model

and can result in deflationary spirals.13 The standard deviation of the monetary policy shock is set to negligible

value. This ensures that this shock does not affect the moments of the model.

3.4 Non-Linear Transmission, Reversal Interest Rate and Optimal

Lower Bound

This section deals with the non-linear transmission of the shocks and its implications for monetary policy conduct.

In particular, the conditions that give rise to a reversal interest rate are discussed. The shocks have asymmetric

effects as the deposit rate pass-through is state-dependent. The quantitative and qualitative impact of an innovation

depends on the size of the shock, the sign of the shock, and the current state of the business cycle when the

shock materializes. Specifically, the model predicts that accommodative monetary policy becomes contractionary,

which is the reversal interest rate, conditionally on being in a severe recession. Finally, the optimal lower bound

on the policy rate is assessed since it can be used to avoid that monetary policy reverses.

3.4.1 Impulse Response Functions and Non-Linearities

We begin with an impulse response analysis to demonstrate the non-linearities of the model.

Risk-Premium Shock Figure 3.4 shows the impulse response functions of a risk premium shock. The different

lines are associated with different sizes and signs of the shock ϵηt . We consider negative and positive shocks with

the size of one and two standard deviations. The starting point of the economy is the risky steady state, which is

the point to which the economy would converge if future shocks are expected and the realizations turn out to be

zero (Coeurdacier et al., 2011a). To begin with, the model has the standard financial accelerator which amplifies

the impact of financial shocks. An increase in the risk premium, which is a contractionary shock, affects the

consumption and saving decision of the households as well as the refinancing costs of the banks. The households

postpone consumption so that output drops. This affects banks as their return on assets is lower and asset prices

12The standard deviation of detrended real GDP is 2.1%. As the model does not have a trend, we detrend the
logarithm of real output linearly.

13Bianchi et al. (2019) show that a high frequency of being at the zero lower bound can result in deflationary
spirals so that there does not exist an equilibrium anymore. The probability of a constrained monetary policy
leads to a vicious circle of low inflation, rising real interest rates, which in turn leads to lower inflation. Fernández-
Villaverde et al. (2015) show that for instance a tax that affects the Euler equation can help to match the duration
and frequency of a zero lower bound episode.
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falls. In addition, the funding costs of the banks increase. Both effects reduce the net worth and weaken the

balance sheet of the banks which amplifies the shock via the financial accelerator mechanism. Monetary policy

lowers the interest rate to mitigate the bust. However, the impact of such a policy is non-linear due to the imperfect

deposit rate pass-through and the reserve requirement.

The stronger relative impact of a contractionary risk premium shock compared to an expansionary one

demonstrates that monetary policy can lose its effectiveness. As can be seen in Figure 3.4, this asymmetry is

visible from the reaction of output, the policy rates, bank net worth and leverage which all have a more pronounced

response for a risk premium increase. Monetary policy is less effective in stabilizing the economy in a downturn

as deposit rates move less than one-to-one due to the imperfect pass-through. This stems from two different

channels that operate via the households and banks. First, the deposit interest rates offset less the increase in the

wedge in the household’s Euler equation. This results in a stronger drop in consumption. Second, the funding

costs of the banking sector do not decrease much as the deposit rates are decoupled from the policy rate. At

the same time, the spread of the reserve assets also diminishes. This together implies that the banks’ net worth

losses are comparatively more severe so that there is a strong contraction of lending and output. Importantly, the

financial accelerator increases such effects.

Furthermore, another non-linear feature can be discerned from the fact that the size of the contractionary

shock matters for how forcefully it is transmitted to the economy. The economy responds considerably more

than twice as strong in case of a two-standard deviation compared to a one standard deviation shock increase.

The reason is that the deposit rate pass-through becomes more sluggish the deeper the recession. This effect

is reinforced through the government asset requirement. In contrast to this, the size of a decrease in the risk

premium has less of an effect if the economy is initially at the steady state. There is a perfect pass-through in this

part of the state space so that the size of the shock does not matter.

Monetary Policy Shock The transmission of monetary policy shocks with distinctive sizes and signs are shown

in Figure 3.5. The economy is initially again at the risky steady state. A lowering of the monetary policy rate

boosts the economy and vice versa. Reducing the policy rate affects the deposit rate, which induces households to

consume more and reduces the refinancing costs of banks. This leads to an increase in aggregate demand and

increases credit supply. Compared to the risk-premium shock, the non-linearities are less pronounced. As the

relative impact of the monetary policy shock is small, it does not push the economy far away from the initial point.

In this area, there is then almost perfect deposit rate pass-through so that monetary policy is very effective.

3.4.2 Reversal Interest Rate

The previous simulation suggests at first glance that accommodative monetary policy is effective and there is

no reversal interest rate. This is due to the fact that the starting point of the simulations are the risky steady

state which implies that the economy is in a region with normal interest rates and close to perfect pass-through

of deposit rates. However, the impact of the monetary policy shock is asymmetric for varying interest rate
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environment. Therefore, combining the monetary policy shock with simultaneously occurring risk-premium

shocks allows to assess the monetary policy shock at different points of the cycle.

Figure 3.6 shows the impulse responses of a negative one standard deviation monetary policy shock depending

on different risk-premium innovations ϵη1 . The starting point is still the steady state, but the risk premium shock

contracts the economy. The displayed paths show the percentage deviations between a path with and without

the monetary policy shock for varying risk premium innovations. Depending on the size of the contractionary

risk-premium shock, the monetary policy shock becomes less powerful. The expansionary impact of monetary

policy shock decreases with the strength of the risk premium shock as can been in the responses of output,

inflation, net worth and leverage. In fact, its impact even reverses for a scenario with ϵηt = 3σηt . In this case,

monetary policy, which is intended to be accommodative, actually reduces output, inflation and bankers’ net

worth. The reason is that the nominal interest rate is so low when the risk premium shock occurs that monetary

policy does not only become less effective, but even harmful for the economy. It turns out that an increase in the

nominal rate would actually be beneficial in such a state. The reason is that the reduction in the interest rate hurts

the net worth of the banks sufficiently strongly due to their substantial government asset holdings. At the same

time, the refinancing costs and aggregate demand of households are mostly unaffected as the deposit rate is very

sticky in this state of the economy.

To better understand when and how the impact of the shock reverses, the solid line in Figure 3.7 shows the first

period impact of an exogenous one-standard deviation monetary policy shock for varying risk premium shocks.

If the risk premium shock is negative or around zero, which can be interpreted as an expansion respectively

tranquil times, monetary policy is very effective. Importantly, the nominal interest rate is high and is efficiently

passed-through. In this case, there is no strong state-dependency. In contrast to this, monetary policy is less

powerful in recessions than in booms. Around a risk premium shock of ϵη = 1.003, which is around 3 standard

deviations, output and inflation fall when monetary policy expands. This is explained by the strong drop in bank

net worth in this state of the economy. Furthermore, we can see that the deposit rate pass-through declines as the

drop in the nominal interest rate increases while the impact on the deposit rate becomes weaker. This ineffectively

increases in the severity of the economic contraction. Hence, a sufficiently strong contraction implies that loose

monetary policy not only becomes ineffective but potentially even harmful. Finally, we can see a flat line on the

nominal rate and deposit rate, which indicates the lower bound of monetary policy.

Deposit Rate Pass-Through and Government Asset Holdings The deposit rate pass-through and the banking

sector’s government asset holdings are the key factors that generate state-dependent monetary policy in our

framework. To analyse their impact, the frictions are relaxed one at a time.

First, a model featuring perfect deposit rate pass-through is considered. Accordingly, the deposit rate equals

the policy rate adjusted for the mark down:

RDt = RAt − ς (3.32)
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Figure 3.7 First period response to a monetary policy shock combined with different sized risk premium shocks. The vertical
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As a consequence, the pass-through is not state-dependent. Consequently, monetary policy transmission is equally

effective in a expansion as well as in a recession. Thus, the central bank can stimulate demand and lower the

refinancing costs for the banking sector also during a downturn. Simultaneously, the negative effects via the

government bonds are shut down as the government spread is fixed, that is RAt −RDt = ς . To show this, Figure

3.7 contrasts this setup with the full model for the first period response of a monetary policy shock. There are

almost no state-dependencies anymore and monetary policy shock has almost the same impact over the same

cycle. This can be seen in the relatively flat line. Consequently, monetary policy is always effective and this

specification does not feature a reversal interest rate. This highlights the importance of including imperfect

pass-through in the model as observed in the data.

The second experiment is to alter the amount of reserve assets. In particular, we consider a calibration in

which the banks only hold half the share of government assets than what is assumed in the benchmark model

calibration. Monetary policy is still assumed to be state dependent and is less powerful in recessions due to

the imperfect deposit rate pass-through. However, a reversal rate does not materialize in this setting because

monetary policy does not result in net worth losses of bankers as can be seen in Figure 3.7. While monetary

policy becomes less effective for low interest rates, it does not become contractionary. In fact, monetary policy

can stabilize the banking sector now even in a severe recession. This result can be seen in the increase on net

worth for a risk premium shock around a value of 1.003. From this point onward, the optimal lower bound is

binding so that the policy rate is capped. However, a policy shock can lower the interest rate further. A monetary

policy accommodation is useful in this setup as the net worth of the banks increases. Thus, the overly restraining

lower bound explains the increase in the effectiveness of a monetary policy shock.

3.4.3 Optimal Lower Bound of Monetary Policy

The model can generate a reversal interest rate, in which an exogenous lowering of the interest rate contracts the

economy. Importantly, the same mechanism holds for the lower bound of monetary policy. A very loose lower

bound can have adverse effects. The endogenous lower bound RA can avoid such adverse effects. At the same

time, setting a too conservative bound would restricts monetary policy unnecessarily. We evaluate the optimal

lower bound in our model using the welfare of the households, which is given by:

W0 = Et

∞∑
t=0

βt

[
C1−σ
t

1 − σ
− χ

L1+φ
t

1 + φ

]
(3.33)

In addition to this, we consider the distributional impact on output, financial sector variables and inflation.

Figure 3.8 shows the shape of welfare depending on the variation in the lower bound. The optimal lower

bound for the interest is around −1% per annum. At this rate, the trade-off between lowering the interest rate

with diminishing deposit rate pass-through and lowering banks’ income on their government asset holding is

optimally balanced. This is the endogenously determined reversal interest rate in our model. It should be noted

that an overly restrictive lower bound such as keeping the policy rate at positive levels lowers welfare as the

central bank forgoes potentially beneficial monetary accommodation. This highlights the problem with monetary
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Figure 3.8 Welfare for different lower bounds of the policy rule RA (measured as annualized net rate). The x-axis shows the
interest rate in percent per annum. The star marks the baseline calibration with a lower bound at −2%.

policy accommodation when approaching a reversal interest rate territory. Monetary policy needs to balance

inflation stabilization and the stability of the banking sector.

We can compare the impact of the lower bound on the moments of the model. Table 3.2 shows the different

selected moments for a very negative lower bound at -5% , the baseline case with -2% and a rather large and

positive lower bound at 1% using a simulation of 200000 periods (after a burn-in period). The differences between

a very negative lower bound and the baseline case are rather small. In particular, we can see that output and

leverage is slightly larger in the economy with a lower bound at −2%. The banking sector is allowed to be more

levered up as the banks do not face potential losses through the reversal interest rate. The strongest difference

is in the behaviour of inflation, where a very low lower bound leads to increased inflation. In addition to this,

leverage is much more volatile for a lower bound with RAt = −5%. Nevertheless, the differences are rather small

because interest rates are rarely so negative. If the economy would be more often in such a severe recession that

can trigger very low rates, the differences in the moments would be stronger. At the same time, we see stronger

response of the moments if the lower bound is set very tight. A lower bound of 1% results in considerably lower

average output. We also see much more deflation as the central bank does not respond to deflationary pressure

sufficiently. In addition to this, the economy is also much more volatile as monetary policy intervenes less.

The observation that the differences are larger for a high lower bound compared to a very low is a result from

the fact that the economy only infrequently encounters very low interest rates where the reversal rate affects the

economy. Therefore, an overly restricted monetary policy does not stabilize the economy for macroeconomic
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Table 3.2 Selected Moments for Varying Monetary Policy Lower Bound RA

Moment Model I: RA = −5 Model II: RA = −2 Model III: RA = 1
a) Mean
Y 1.0040 1.0042 1.0015
N 1.1477 1.1465 1.1517
ϕ 8.1943 8.2076 8.2282
π 2.0157 1.9835 1.9727
b) Standard Deviation
σ(Y ) 0.0219 0.0223 0.02462
σ(N) 0.1675 0.1712 0.1907
σ(ϕ) 5.1945 4.237 6.2787
σ(π) 0.4057 0.4152 0.4564

outcomes that occur frequently, while the occurrence of the reversal interest rate hurts the economy, but this

is more of a tail event. This suggests that the decision between setting the optimal lower bound is a decision

between financial stability and inflation stabilization if interest rates are low.

3.5 Macroprudential Policy

Macroprudential policy is an important tool that can be used to restore the transmission of monetary policy. It can

help to improve the banking sector’s capital position and hence, the resilience over the cycle. This is especially

important in our setup as monetary policy loses efficiency and can even have a reverse impact due to the imperfect

deposit rate pass-through and the requirement of holding government assets. A stronger capitalized banking sector

could remedy this problem, which creates a role for macroprudential regulation in addition to the market-based

requirement.

The macroprudential regulator can impose restrictions on the bank capital ratio, which is defined as the

inverse of leverage 1/ϕ. In particular, the regulator can require the banks to build additional capital buffers and

release them subsequently. This policy instrument is based on the countercyclical capital buffer (CCyB) that was

introduced as part of the Basel III requirements. The CCyB is build up during an expansion and can then be

subsequently released, although never below 0%, during a downturn.

We incorporate this asymmetry using an occasionally binding macroprudential rule. The policy cannot reduce

the capital requirements below the market-based capital demands. The regulator could theoretically set capital

ratios below the market ones, but the market-based constraint would be the binding constraint for the banks. Thus,

the market enforces a lower bound on regulatory capital requirements. This restriction diminishes the welfare gains

of macroprudential policy as the scope of policy interventions during a downturn is limited.14 This in particular

highlights the importance of building up buffers in good time in order to create sufficient macroprudential space

that can be employed to relax capital requirements in bad times and thus ensure macroprudential policy efficiency.

14The usual approach in the DSGE literature is based on unrestricted rules without a lower bound in assessing
countercyclical capital requirements. An exception is for instance Van der Ghote (2018), where the market-based
leverage constraint restricts optimal macroprudential regulation.
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3.5.1 Macroprudential Policy Rule

The macroprudential regulator can set a time-varying capital buffer τt that imposes additional capital requirements.

We use the following functional form:

τt = min
{

(ϕMPP − ϕMt )τMPP , 0
}

(3.34)

where τMPP is the responsiveness and ϕMPP is the anchor value of the buffer. The rule responds to deviations

of the market-based leverage ϕMt from the anchor value ϕMPP . The asymmetry of the buffer depends directly

on ϕMPP . For this reason, we consider different potential anchor values. The alternative approach would be to

impose the non-negativity at a pre-imposed point such as the steady state. However, this would unnecessarily

restrict how macroprudential policy space is build-up and released. The min operator ensures that the buffer can

only have non-negative values, which creates an asymmetry in the buffer in line with the Basel III requirements.

The market-based capital constraint stems from the agency problem of the banker (see equation (3.10)) and is

repeated for convenience:

ϕMt =
νt + δB

1−δB
λ

1−δB − µt
(3.35)

This implicitly ensures that the buffer is countercyclical in our model if τMPP > 0 since market-based bank

leverage is countercyclical in the model. As the buffer is additive to the market-based equity requirements, the

banks capital ratio reads as follows

1
ϕt

= 1
ϕMt

+ τt (3.36)

Due to the non-negativity restrictions of the buffer, the policy instrument occasionally affects leverage. If

the buffer is at zero, leverage is determined directly from ϕMt . Therefore, the regulatory capital buffer is an

occasionally binding constraint. It affects asymmetrically the capitalization of the banking sector depending on

the state of the world. It imposes additional capital requirements if the banks hold many securities.

The buffer also impacts the transmission of the risk premium shock, which Figure 3.9 highlights. We

compare the economy with and without the policy rule. The regulated economy uses τMPP = 0.016% and

ϕMPP = 9.75.15 This parameterization ensures the build-up of the buffer in good times and its subsequent

release. The starting point for both economies is their respective risky steady state. Once the risk premium shock

arrives in period 1, the economy with the buffer responds much less to a contractionary shock as the impact of

the net worth channel is reduced. This emphasizes the dampening effect of the capital buffer in downturns. The

initial response to an expansionary shock is very similar despite the additional requirements from the buffer. Thus,

macroprudential policy has the potential to impact the reversal interest rate.

15The values are optimal regarding welfare as shown later.
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Figure 3.10 First period response to a monetary policy shock combined with different sized premium shocks to compare the
baseline with the macroprudential rule. Vertical axis display the state-dependent difference for the period t = 1 response
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premium shock that occurs simultaneously in the first period, which is displayed on the horizontal axis.
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3.5.2 Macroprudential Policy and Reversal Interest Rate

We have shown and highlighted the importance of the reversal interest rate for economic outcomes. As the impact

of monetary policy on banking sector leverage is key for the possibility to enter a reversal rate territory, a better

capitalized banking sector can compensate losses and reduce the asymmetry of monetary policy shocks. To

illustrate the beneficial role of macroprudential policy we compare the impact of the capital buffer rule on the

reversal interest rate.

Figure 3.10 shows the initial impact of a negative one-standard deviation monetary policy shock for varying

risk premium shocks. We compare the same macroprudential policy as before to the baseline scenario without a

buffer. This clearly shows that macroprudential policy can be used to avoid reaching a territory with a reversal

interest rate. As the buffer dampens contractionary shocks, the economy encounters less severe recessions and

fewer interest rate reductions. This implies that monetary policy retains more of its efficiency for large ϵηt and

is less likely to enter the region with a reversal interest rate. The lower bound in the nominal interest rate plot

demonstrates this. Macroprudential policy does not only stabilize output, it also affects the response on inflation.

One feature of the reversal interest rate is that it lowers inflation. However, inflation response is pushed outwards

depending on the strength of the buffer.

While the countercyclical capital buffer rule helps to restore the monetary policy transmission mechanism in

case of large contractionary shocks, it also affects it in normal times. As the banking sector is better capitalized,

monetary policy is less powerful during an expansion. For instance, the increase in output or net worth is smaller

in an economy with an active macroprudential policy.

3.5.3 Optimal Macroprudential Policy

Macroprudential policy affects the distribution and can reduce the threat of the reversal interest rate. This

notwithstanding, a too large capital requirement could also depress the economy. We evaluate this trade-off

using the same welfare criteria as before, which is specified in equation (3.33). Figure 3.11 shows the welfare

depending on the variation in the rules. We show the changes in welfare using different anchor values. For each

anchor value, the optimal level of responsiveness is calculated and used. Macroprudential policy can improve

welfare as can be seen in the hump-shaped welfare function. It is also above the baseline scenario without the

buffer. The optimal macroprudential policy rule has ϕM = 9.75, where τMPP = 0.016%. In this exercise, we

jointly maximize over the two parameters related to the buffer. Appendix C.4 contains more details about the

interactions between the parameter ϕMPP and the responsiveness of the rule τMPP .

In setting the rule, the regulator faces a trade-off between stabilizing the economy and imposing too large

buffers. While buffers are costly in good times, they stabilize the economy in bad times. A too low buffer does

not create enough macroprudential space that can be used during a severe downturn. It should be noted that the

positive impact of this rule results from the reversal interest rate and the imperfect deposit rate pass-through. For

instance, in an economy with a perfect pass-through, the proposed macroprudential policy rules would result

in a welfare loss. In fact, it would be optimal to not have the capital rule (or to set τMPP = 0) as the costs of

building-up the buffers outweigh the benefits in this economy without a reversal rate.
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Figure 3.11 Welfare for different anchor values ϕMP P , which is varied on the horizontal axis. The response to deviations
τMP P is set optimally to maximize welfare for each value of ϕMP P .

Figure 3.12 compares the impact of the buffer on the distribution of economic variables.16 In particular, the

optimal policy is contrasted to an economy without macroprudential policy. This shows the trade-off between

stabilization in crisis times and the potential costs in good times. The optimal buffer reduces the risk of large

output contraction since the left tail of output is much less fat with macroprudential policy. The standard deviation

of output falls by 11 percent due to the buffer. The reason is that the banking sector with a buffer is better

capitalized. It can be seen that this economy has a lower right tail for leverage. This also implies that the economy

is less likely to encounter negative interest rates. In particular, the buffer decreases the likelihood of negative

interest rates by around 23 percent. The interest rate is less likely at or below minus one percent, which is the

optimal lower bound. The bank capital rule lowers the probability of a policy rate below −1% by 26 percent.

At the same, the buffer can be costly in good times as the buffer is build-up in good times. Therefore, an

expansion is smaller as can be seen in the left tail of output and net worth. The impact on inflation is very small.

The macroprudential policy reduces the left tail slightly.

3.5.4 Interaction with Lower Bound on Monetary Policy

Macroprudential and monetary policy are strategic complementarities in the model. Therefore, it is important

to understand the interaction of macroprudential policy with different lower bounds for monetary policy. To

16The density functions are estimated with an Epanechnikov Kernel based on a simulation of 200000 periods
after a burn-in period.
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Figure 3.12 Density functions for varying macroprudential rules: baseline economy without macroprudential versus the
optimal rule Each distribution is estimated using an Epanechnikov kernel function based on a simulation of 200000 periods
(after burn-in).

address this question, we compare the different lower bounds for an economy without and with macroprudential

policy, which can be seen in Figure 3.13. For each lower bound, we choose the optimal macroprudential policy

to calculate welfare.17 While both welfare curves are hump-shaped, welfare under the macroprudential rule is

higher. Macroprudential policy helps to avoid that the economy enters reversal rate territory. As it stabilizes the

banking sector, the recession and the threat of ultra low interest rates is less severe. Via this channel, the welfare

optimising capital rule improves welfare independent of the specific lower bound.

We can also see that the capital buffer does not affect directly the choice of the optimal lower bound. The

reason is that the macroprudential policy space is already released once the policy rate is lowered to such a

negative territory. If the macroprudential policy space would affect also the capital holdings in a negative region

of -1%, the lower bound would adjust. This could be the case if the central bank would require very large buffer

holdings or increase the general level of capital requirements.

In addition to the increase in welfare, the macroprudential policy results in a more flat curve. The capital

buffer rule smoothes the fluctuations and the economy is less often in such a low interest rate area. A suboptimal

17This implies that we maximize ϕMPP and τMPP for each value of τMPP .

97



-5 -4 -3 -2 -1 0 1 2

Lower Bound on Monetary Policy RA

-221.5

-221.4

-221.3

-221.2

-221.1

-221

-220.9

-220.8
W

el
fa

re
 C

ri
te

ri
a

Welfare, Lower Bound and Macroprudential Policy

Baseline
Macroprudential Rule

Figure 3.13 Welfare with and without macroprudential policy for different lower bounds on monetary policy (measured as
annualized net rate). The macroprudential policy rule parameters ϕMP P and τMP P are optimized separately for each lower
bound.

lower bound, which either restricts monetary policy very much or allows a too negative policy rate, has then less

of an impact. In other words, macroprudential policy mitigates the danger of either too loose or too restrictive

monetary policy in a very deep recession. This connection adds further to the strategic complementarity between

macroprudential and monetary policy in a low interest rate environment.

3.6 Conclusion

In this paper, using a novel non-linear general equilibrium model for the euro area, we have shown how shocks

hitting the economy may give rise to asymmetric effects depending on the state of the economy. Conditional on

being in a severe recession, our model predicts the possibility of a reversal rate where an accommodative lowering

of the policy rate may give rise to a contraction of output. This also allows us to derive an optimal lower bound

for the policy rate below which monetary policy loses its effectiveness.

We also demonstrated an important link between the role of banks and bank leverage for the effectiveness of

monetary policy transmission and the reversal rate. Specifically, there are two financial frictions in the model

that enables the possibility of a reversal rate: (i) an imperfect deposit rate pass-through due to a monopolistic

banking sector which becomes more sluggish as policy rates approach zero or become negative and (ii) a reserve

requirement which may create losses during recessions. Furthermore, as banks are capital constrained negative
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shocks affect their net worth and amplify via the financial accelerator. We show that a less well-capitalized

banking sector enhances the likelihood that monetary policy loses its potency and also the risk of entering reversal

rate territory. In addition to analysing the countercyclical capital buffer, the framework could be extended to

discuss the connection between other policy tools such as a tiering system for reserve holdings or quantitative

easing and the reversal interest rate.

The analysis has at least two important policy implications. First, macroprudential policy using a counter-

cyclical capital buffer approach has the potential to alleviate and mitigate the risks of entering into a reversal rate

territory. Second, there are important strategic complementarities between monetary policy and a countercyclical

capital-based macroprudential policy in the sense that the latter can help facilitate the effectiveness of monetary

policy, even in periods of ultra low, or even negative, interest rates. Overall, the findings in this paper provide

important insights into the relevance of financial stability considerations in monetary policy strategy discussions.
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Chapter 4

Pandemic Recessions and Contact

Tracing

Joint with Leonardo Melosi

Abstract We study contact tracing in a new macro-epidemiological model in which infected agents may not

show any symptoms of the disease and the availability of tests to detect asymptomatic spreaders is limited.

Contact tracing is a testing strategy that aims to reconstruct the infection chain of newly symptomatic agents. We

show that contact tracing may be insufficient to stem the spread of infections because agents fail to internalize

that their individual consumption and labor decisions increase the number of traceable contacts to be tested in

the future. Complementing contact tracing with timely, moderate lockdowns corrects this coordination failure,

allowing policymakers to buy time to expand the testing scale so as to preserve the testing system. We provide

theoretical underpinnings to the risk of becoming infected in macro-epidemiological models. Our methodology

to reconstruct infection chains is not affected by curse-of-dimensionality problems.

4.1 Introduction

The outbreak of the COVID-19 pandemic set off a worldwide health and economic crisis of unprecedented

proportions. Quickly expanding the capacity for testing, isolation, and contact tracing has been suggested by

several experts to be a crucial step to alleviate the pandemic’s toll on the economy and mortality.1 For instance,

South Korea has combined contact tracing, mass testing, and mild containment measures to achieve one of the

lowest infection rates in the world. Nevertheless, other countries, such as the U.S., have been considerably less

1For instance, Dr. Anthony Fauci, the director of the National Institute of Allergy and Infectious Diseases,
said in an interview with Dr. Howard Bauchner, the editor of the Journal of the American Medical Association in
April 2020 that: “The keys [to a successful response] are to make sure that we have in place the things that were
not in place in January, that we have the capability of mobilizing identification – testing – identification, isolation,
contact tracing."
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successful, notwithstanding sizable investments made in contact tracing and mass testing. Dr. Fauci, the director

of the National Institute of Allergy and Infectious Diseases, explained the failure of contact tracing in the U.S.

at a Milken Institute event held in July: “When you have a situation in which there are so many people who

are asymptomatic, that makes that that much more difficult, which is the reason you wanted to get it from the

beginning and nip it in the bud. Once you get what they call the logarithmic increase, then it becomes very

difficult to do contact tracing. It’s not going well."

We construct a macro-epidemiological model to explain why contact tracing can fail and how this failure can

be averted. We show that contact tracing can be unsuccessful because of a coordination failure leading people to

entertain economic and social interactions at rates exceeding policymakers’ ability to trace, test, and isolate the

close contacts of confirmed cases. Complementing contact tracing with a timely, moderate lockdown corrects this

coordination failure, allowing policymakers to buy time to expand the tracing and testing scale. Preserving the

viability of the tracing and testing system is critical to save human lives and to mitigate the economic costs of

pandemics. As a methodological contribution, we show how to reconstruct the infection chain of confirmed cases

so as to study contact tracing in macro-epidemiological models.

In the model, agents who become infected do not have any symptoms at first.2 While they remain asymp-

tomatic, they do not know that they are infected and, therefore, keep consuming and working exactly as when

they were not infected. In doing so, they create a network of contacts with other agents through which they

silently spread the virus. When they turn symptomatic or when they get tested, these spreaders are detected and

quarantined by the health authorities so that they cannot infect anyone else.

Contact tracing is a testing strategy that aims to reconstruct as much as possible of the newly symptomatic

cases’ infection chain – i.e., the network of interactions that led a newly symptomatic case to become infected or

to infect other agents. This reconstruction forms the basis to decide who to test. The objective of testing is to

detect as many asymptomatic spreaders as possible and quarantine them. How much of the infection chain can be

reconstructed by health officials defines the efficiency of the contact tracing technology.

Agents’ consumption and labor decisions have externalities on the number of subjects that health authorities

have to trace and test in future periods. Since agents fail to realize the existence of these externalities, their

consumption and labor decisions may end up overburdening the testing system to the point of making it insufficient

to contain the spread of the virus a few periods later. As the risk of becoming infected increases, agents want

to reduce their economic interactions. To this end, they lower their consumption and labor, causing a severe

pandemic recession.

A timely, limited lockdown solves the coordination failure, allowing the health authorities to buy time to

ramp up their testing capacity. By averting the collapse of the testing system, the lockdown greatly mitigates the

pandemic recession. This is not the only way to shore up the testing system against agents’ coordination failure in

2Our methodology to reconstruct infections chains to study contact tracing can be straightforwardly applied to
models in which only symptomatic individuals can transmit the virus.
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the model. Improving the efficiency of the contact tracing technology makes the testing system more resilient and

reduces the optimal stringency of the lockdown.3

When the epidemiological parameters of the model and the availability of tests are calibrated to match the U.S.

data during the COVID-19 pandemic, we find several interesting results. Contact tracing –even a very basic one–

considerably improves the ability of health authorities to control the spread of the pandemic relative to a strategy

based on randomly testing the population. This prediction is in line with empirical findings by Fetzer and Graeber

(2020), who show quasi-experimental evidence that contact tracing is very effective in containing the spread of

the virus. Unlike randomly testing the population, contact tracing exploits the existence of an infection chain

connecting the newly symptomatic agents with the subjects they have infected in the current period. Therefore,

the probability of finding an asymptomatic spreader by testing one contact of a newly symptomatic person is

much higher than the probability of catching an asymptomatic spreader by randomly testing one subject in the

population. We find that random testing requires an unrealistically large testing capacity to effectively contain the

spread of the virus.

If the contact tracing technology had allowed health officials to trace interactions for a period of one week

(basic contact tracing technology), the pace at which the U.S. built up its testing capacity at the beginning of the

pandemic would have not been fast enough to stop the rapid spread of the virus. As we emphasized above, agents

consume and work too much as they fail to realize that their individual consumption and labor decisions have

negative externalities on the viability of the testing system.

However, the testing system can be preserved by imposing a mild lockdown.4 The lockdown mitigates the

pandemic recession and reduces its death toll. By ensuring the correct functioning of the testing system, the

lockdown prevents the surge in the infection rate and the ensuing drop in consumption and employment. This

result underscores the existence of exploitable complementarities between lockdowns and testing and the critical

importance of preserving the testing system for a successful management of the pandemic.

Lockdowns are typically enacted in response to flare-ups of infection –often to prevent hospitals from

becoming overburdened. In this paper, we suggest a quite different strategy that envisions moderate lockdowns

as preemptive tools to keep the tracing and testing system viable while policymakers ramp up the testing scale.

Unlike the more common lockdowns, the type of lockdowns studied in this paper are generally less stringent and

are used preemptively with the objective of moving ahead of the infection curve. Indeed, we show that a surge in

the number of infections is the unequivocal sign that the testing system is already not working properly.

When we consider a more efficient technology allowing health authorities to trace contacts that occurred as far

back as the previous week (comprehensive contact tracing technology), economic and health outcomes improve

considerably. The comprehensive tracing technology gives health authorities a second chance to quarantine

3A redistributive fiscal policy aimed at taxing the symptomatic agents could also be an effective tool to counter
the externalities studied in this paper. This policy penalizes risk taking and compensates for labor productivity
losses associated with the symptoms of the disease. We do not study this policy because redistributive issues are
beyond the scope of this paper, whose main objective is to formally model contact tracing.

4By mild lockdown, we mean a less stringent lockdown than the optimal one in the absence of testing.

102



asymptomatic spreaders who could not be traced and tested in the previous periods.5 Managing to lower the

number of asymptomatic spreaders early on reduces the amount of tests needed to be performed later on. It then

turns out that, under this more efficient tracing technology, the pace at which the U.S. built up its testing capacity

would have required introducing only minimal restrictions on the economy.

Contact tracing has been used to control the spread of a long list of lethal diseases, such as syphilis, tuberculosis,

measles, sexually transmitted infections (including HIV), blood-borne infections, Ebola, H1N1 (swine flu), Avian

Influenza, SARS-CoV (SARS), and SARS-CoV-2 (COVID-19).6 However, formally modeling contact tracing is

very hard as the number of contacts established by an infected subject quickly explodes as the number of past

periods considered increases.

We solve this dimensionality problem by modeling the probability that a susceptible subject entertains a

number of economic interactions with the pool of asymptomatic infected agents as a sequence of Bernoulli

trials. The number of trials depends on how much susceptible agents consume (work) and the probability of

success (i.e., meeting with an asymptomatic infected subject) is assumed to depend on the share of consumption

(work) of asymptomatic infected people. It follows that the probability for a susceptible agent to have met a

number of infected agents who can have infected them is a binomial distribution. This binomial distribution

allows us to parsimoniously characterize the endogenous probability of a susceptible agent to become infected

in a given period. This probability turns out to nest that in the canonical SIR model proposed by Kermack and

McKendrick (1927) as the special case in which the virus cannot be spread through consumption and labor

interactions. How we characterize the probability of becoming infected provides theoretical underpinnings to

those macro-epidemiological models where this probability is assumed.

Moreover, this binomial distribution conveniently summarizes all the necessary information to reconstruct the

infection chains in our model, which is key to pinning down agents’ probabilities of being traced and tested. This

methodology to reconstruct the history of interactions relevant for contact tracing is general and can be applied to

macro-epidemiological models with multiple sectors or heterogeneous agents.7

Related literature Our model is related to the macro-epidemiological literature. This literature is quickly

growing in many different directions. The directions more closely related to our paper are: analyses of the

trade-off between saving human lives and mitigating the recession (Gourinchas 2020 and Hall et al. 2020); models

to study optimal lockdowns (Alvarez et al. 2020; Atkeson 2020; Bethune and Korinek 2020; Farboodi et al. 2020;

5Under the basic tracing technology, these undetected spreaders will not be traceable via their infection chain.
They can only be detected if they randomly meet one of the subjects who will then develop the symptoms of the
disease. But this is a relatively low-probability event. It is actually worse than that, since the entire infection chain
that each of these undetected spreaders will create going forward becomes much harder for the health authorities
to uncover. This happens because newly infected subjects are initially asymptomatic and it takes at least one
period for them to show symptoms. The comprehensive tracing technology is not affected by these shortcomings.

6Contact tracing was originally proposed in 1937 by Surgeon General Thomas Parran for the control of
syphilis in the U.S. and was later implemented to control the spread of this virus in the following years (Parran,
1937).

7See Guerrieri et al. (2020) for an example of multisectoral models to study how an epidemic and associated
lockdowns affect aggregate demand and supply. See Kaplan et al. (2020) for an example of macro-epidemiological
models with income and wealth inequalities.
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Eichenbaum et al. 2020a; Moser and Yared 2020; Piguillem and Shi 2020); models to study more targeted and

smarter policies, such as testing or targeted quarantines, as alternatives to indiscriminate lockdowns (Acemoglu

et al. 2020; Akbarpour et al. 2020; Atkeson et al. 2020; Azzimonti et al. 2020; Baqaee et al. 2020a; Berger et al.

2020; Bognanni et al. 2020; Brotherhood et al. 2020; Chari et al. 2020; Eichenbaum et al. 2020b; Favero et al.

2020; Galeotti et al. 2020; Glover et al. 2020; Hornstein 2020; Krueger et al. 2020); studies of the distributional

consequences of various containment policies (Hacioglu et al. 2020; Kaplan et al. 2020); and models to evaluate

the efficacy of public policies –not based on tracing and testing– in controlling the spread of HIV (Greenwood

et al. 2019).

Some of these papers develop models that use a network structure combined with various types of agents’

heterogeneity to study the spread of the pandemic and its cross-sectional consequences. While we also use a

network to model the spread of infections, our primary goal is to use the network to model contact tracing. We

also show analytically that our approach to constructing the network is consistent with the SIR and macro-SIR

literatures.

Our main contributions relative to the literature are twofold. First, we study a novel type of coordination

failure that can disrupt the functioning of the tracing and testing system. A second important point of departure

is to use the network of agents’ past interactions to keep track of those spreaders who can be traced and tested.

While other papers have studied contact tracing, we believe to be the first ones to model contact tracing by

formally reconstructing this endogenous network structure. These two contributions are intertwined. In order for

the coordination failure to arise, the amount of traceable agents who need to be tested has to be linked to agents’

consumption and labor decisions. In our model, this link is given by the endogenous network of interactions,

which is determined by how much agents have consumed and how much they have worked in the past periods.

The rest of the paper is organized as follows. In Section 4.2, we present the model. In Section 4.3, we

formalize contact tracing. In Section 4.4, we discuss the solution method and the calibration of the model. In

Section 4.5, we apply our methodology to study why contact tracing has been largely ineffective in mitigating the

COVID-19 crisis in the US and what could have been done to make it work. Some extensions are discussed in

Section 4.6. In Section 4.7, we conclude.

4.2 The Model

The model economy is populated by agents who consume and work, firms that hire labor Nt from agents in

a competitive market and produce output according to a linear production function in labor and productivity

parameter A. The government levies taxes on consumption and remits transfers to agents. Labor and output are

traded in competitive markets. Health authorities conduct contact tracing, administer tests, and can quarantine

agents. Agents become infected through interactions with other agents. Following Eichenbaum et al. (2020a), we

assume there are three types of interactions through which the virus spreads out: consumption interactions, work

interactions, and other interactions indepedent of agents’ decisions.

Every period is organized as follows: First, agents consume, work, and engage in other interactions. Second,

agents’ health status can change: agents can get infected or infected agents can recover or die. Third, health
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officials can administer tests. Tests deliver a binary outcome: positive or negative. Tests do not reveal if an agent

has never been infected or has recovered.

There are six types of agents, who differ in their health status. The first type includes susceptible agents

who have not contracted the disease, are not carriers, and are not immune. Infected agents can be divided

into three types: Untested asymptomatic agents if they have not shown symptoms and have not tested positive,

positive-tested agents if they are asymptomatic but they have tested positive, and symptomatic infected agents

if they have shown symptoms regardless of whether they have previously tested positive. The remaining two

types are the recovered agents, who have developed immunity. They are the observed recovered agents, who

have shown symptoms or have tested positive and the unobserved recovered agents who have recovered without

having ever shown any symptoms of the disease or having ever tested positive.

Observability of Types’ Health Status. Since the untested asymptomatic individuals are assumed not to show

any symptoms of the disease, their health status is not observed by anyone in the model. The health status of

susceptible agents and that of unobserved recovered subjects is also not observed even if they got tested at the end

of the previous period. This is because tests only say whether the tested individual is currently infected or not.

The health status of positive-tested, symptomatic infected, and observed recovered agents is publicly observed.

Quarantine. The positive-tested and the symptomatic subjects have their health status revealed and the health

authorities immediately quarantine them.8 Being quarantined means two things. First, in quarantine consumption

and labor decisions are subject to restrictions, which are modeled as a consumption tax. Second, quarantined

agents are isolated from other subjects and cannot infect anyone.

Note that we use the word quarantine to mean a containment policy targeted to a single subject or a subset of

subjects who have been uncovered by the government as potentially capable of spreading the virus. Therefore,

quarantine is different from lockdown, which refers to an economy-wide containment measure, affecting all the

subjects regardless of their health status.

4.2.1 Meeting Probabilities

The virus in our model spreads out because susceptible agents may meet with untested asymptomatic agents while

consuming, working, or engaging in other non-economic activities.9 So it is particularly important to characterize

the probability that a susceptible individual meets with untested asymptomatic subjects. We make the following

assumption to characterize this probability.

Assumption 1. Every random interaction of an agent with a set of agents of a specified type is modeled as a

Bernoulli trial.

8Untested asymptomatic individuals cannot be quarantined because the health authorities cannot distinguish
them from susceptible agents.

9Other infected people – positive-tested and the symptomatic individuals – are quarantined and cannot infect
anyone.
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It then follows that the probability that an individual, who randomly meets n > 0 other agents in a period,

meets k-times with agents of a certain type is given by the binomial distribution B(k, n, p) =
(
n
k

)
pk (1 − p)(n−k)

,

where p is the probability of meeting with agents of a certain type in one random meeting. In the Bernoullian

jargon, there will be n random trials and in each of these trials the individual meets (success) or does not meet

(failure) with a specified group of people. We make the following assumption about the probability of meeting

with a specified group.

Assumption 2. The probability for an agent to meet with agents of a certain type

a) in one random consumption interaction is given by the share of consumption of the agents of that type

relative to the consumption of non-quarantined agents.

b) in one random working interaction is given by the share of hours worked by the agents of that type relative

to the hours worked by non-quarantined agents.

c) in one random interaction not associated with either consumption or work is given by the share of agents

of that type relative to the population of non-quarantined agents.

For instance, the probability of meeting an untested asymptomatic subject in one consumption interaction

is given by the size of the consumption of untested asymptomatic people relative to aggregate consumption. In

symbols, CAt /Ct, where CAt denotes total consumption of the untested asymptomatic agents and Ct stands for the

aggregate consumption of non-quarantined agents. Analogously, the probability for a worker to meet an untested

asymptomatic worker in one hour of work is assumed to be NA
t /Nt, where NA

t denotes total labor worked by

the untested asymptomatic group and Nt stands for aggregate labor of non-quarantined agents. The probability

for an individual to meet with an untested asymptomatic agent in one non-consumption, non-labor interaction

is assumed to be equal to the share of population who is untested asymptomatic. In symbols, IAt /Popt, where

IAt denotes the size of the group of individuals who are untested asymptomatic and Popt stands for the size of

population of non-quarantined agents.

Assumption 3. An individual of health status i who consumes cit units of goods, works nit number of hours at

time t makes φC : cit 7→ N ∪ {0} and φN : nit 7→ N ∪ {0}, respectively, number of interactions, where N ∪ {0}

denotes the set of natural numbers including zero. The same individual also makes a constant number of φO

interactions when engaging in activities other than consumption and labor.

It follows that the total number of interactions a susceptible individual needs to entertain to consume cst ,

work nst , and enjoy other activities, is given by φC(cst ) + φN (nst ) + φO. This gives us the number of Bernoulli

trials due to these three activities in the time unit. We can think of the mappings φC and φN as monotonically

increasing step functions.

Combining all these assumptions allows us to write the probability for a susceptible individual to meet k-times

with the set of asymptomatic subjects while consuming an amount cst of goods as follows:

fc,t (k) ≡ B
(
k, φC(cst ),

CAt
Ct

)
=
(
φC(cst )
k

)(
CAt
Ct

)k (
1 − CAt

Ct

)φC(cst )−k

, (4.1)
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k ≤ φC(cst ). We can analogously derive the probability for a susceptible individual to meet k-times with the

asymptomatic subjects while working an amount nst of hours

fn,t (k) ≡ B
(
k, φN (nst ),

NA
t

Nt

)
=
(
φN (nst )

k

)(
NA
t

Nt

)k (
1 − NA

t

Nt

)φN (nst )−k

, (4.2)

k < φN (nst ). Finally, the probability for any person to meet with people in the asymptomatic group k times

while engaging in other types of interactions is given by

fo,t(k) ≡ B
(
k, φO,

IAt
Popt

)
=
(
φO
k

)(
IAt
Popt

)k (
1 − IAt

Popt

)φO−k

, (4.3)

k < φO.

Let us denote the number of random interactions due to consumption, work, and other activities is kc, kn, and

ko, respectively. The joint probability for a susceptible individual to have a triplet of random meetings (kc, kn, ko)

with untested asymptomatic people is defined as follows:

ft(kc, kn, ko) ≡ fc,t(kc) · fn,t(kn) · fo,t(ko). (4.4)

Assumption 4. Conditional on meeting with an untested asymptomatic individual, a susceptible agent will

become infected with probability τ ∈ (0, 1).

Since this probability of getting infected τ is assumed to be the same across the three different types of

interactions (consumption, work, or others), a susceptible individual entertaining kc + kn + ko interactions with

asymptomatic individuals will become infected with probability 1 − (1 − τ)kc+kn+ko ; that is, one minus the

probability that none of these interactions turns out to be infectious, i.e., (1 − τ)kc+kn+ko .

We can characterize the average probability for a susceptible individual to get infected conditional on

consuming cst and working nst as follows:

τt ≡
φC(cst )∑
kc=0

φN (nst )∑
kn=0

φO∑
ko=0

[
1 − (1 − τ)kc+kn+ko

]
ft(kc, kn, ko), (4.5)

where ft(kc, kn, ko) denotes the joint binomial distribution defined in equation (4.4).

The infection rate τt can be approximated to obtain

τt ≈ Ξ
[
φc · cst

(
CAt
Ct

)
+ φn · nst

(
NA
t

Nt

)
+ φO

(
At
Popt

)]
, (4.6)

where the coefficient Ξ ≡ − ln (1 − τ) (1 − τ)k̄c+k̄n+k̄o , with (k̄c, k̄n, k̄o) denote the average number of interac-

tions at steady state. In Appendix D.7, we show the steps taken to approximate τt.

The approximated infection rate τt in equation (4.6) nests the rate in the canonical SIR model as the special

case in which consumption and labor interactions do not transmit the virus. It is also isomorphic to other leading

macro-epidemiological models, in which this rate is assumed (e.g., Eichenbaum et al. 2020a). Since the infection
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rate in equation (4.6) stems from the choice of modeling economic interactions as binomial trials (Assumptions

1-4), our paper provides theoretical underpinnings to the infection rate used in those models.

4.2.2 Agents with Unknown Health Status

As discussed earlier, susceptible, untested asymptomatic, and unobserved recovered individuals do not know their

health status. To keep the model tractable, we assume that these agents make consumption and labor decisions in

the belief that they have never been infected and thereby are susceptible. While this assumption has a behavioral

flavor, it has minimal implications for our conclusions because our analysis is primarily focused on dynamics at

the beginning of a pandemic when the economy is far away from achieving herd immunity.10 Conditional on the

belief of having never been infected, the agents compute the probability of future changes in their health status

using the model-consistent probabilities. It follows that the agents who do not know their health status choose

their consumption cst , and labor nst so as to maximize

V St = max
cst ,n

s
t

u (cst , nst ) + β
[
(1 − τt)V St+1 + τt

{
πTP,tV

P
t+1 +

(
1 − πTP,t

)
V At+1

}]
, (4.7)

where the utility function u (ct, nt) = ln ct − θ
1/ηn

1/η
t and β denotes the discount factor. We denoted all the

variables in equation (4.7) with the superscript S because these agents believe to be susceptible.

These agents expect to be infected with probability τt, which is defined in equation (4.5). Conditional on

this event, the agents expect with probability πTP,t to test positive at the end of period t and thereby to receive

the utility V Pt+1 of the positive-tested agents in period t+ 1. This value function will be defined in Section 4.2.3.

With probability (1 − πTP,t), the agents expect to become untested asymptomatic and receive the utility V At+1,

which, in period t, is given by

V At = u(c̃st , ñst ) + β
[
πISV

IS
t+1 + πRV

UR
t+1 + (1 − πIS − πR)

(
πAP,tV

P
t+1 + (1 − πAP,t)V At+1

)]
, (4.8)

where c̃st and ñst denote the optimal solution to the problem in equation (4.7) since untested asymptomatic agents

do not know their health status. Conditional on becoming untested asymptomatic in period t+ 1, they expect to

become infected symptomatic in the next period with probability πIS and receive utility V ISt+2 –defined in Section

4.2.4. They expect to become unobserved recovered with probability πR and to receive the utility V URt+2 , which is

defined for the period t as

V URt = u(c̃st , ñst ) + βV URt+1 . (4.9)

The unobserved recovered agents have never showed any symptoms and hence do not know their health status.

Hence, they choose consumption and labor by solving the problem in equation (4.7). If the untested asymptomatic

10Solving the imperfect information problem under full rationality requires keeping track of when agents were
tested last and thereby is very cumbersome.
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agents neither develop symptoms nor recover, they expect to test positive at the end of period t+1 with probability

πAP,t+1 and receive the utility function V Pt+2 in the next period.

The probabilities of testing positive for a newly infected, πTP,t in equation (4.7), and for an asymptomatic

agent, πAP,t in equation (4.8), will be characterized in Section 4.3.

Budget constraint for the non-quarantined agents. The problem is subject to the budget constraint for

non-quarantined agents.

(1 + µLc,t)cst = wSt n
s
t + ΓLt , (4.10)

where µLc,t denotes a tax on consumption proxying the effects of a lockdown on consumption and labor. By

reducing consumption and labor, the lockdown curtails agents’ economic interactions. In doing so, lockdowns

reduce the probability for susceptible individuals to become infected (τt) and, as we shall show, the number of

traceable contacts health authorities have to test at the end of the period. The consumption tax revenue is rebated

to the agents the tax is levied on, ΓLt . The equilibrium wage wSt equals the agent’s labor marginal productivity.

4.2.3 Tested-Positive Agents

Tested-positive agents are individuals who know they are infected even though they do not have symptoms. They

choose consumption, cPt and labor nPt so as to maximize

V Pt = max
cPt ,n

P
t

u
(
cPt , n

P
t

)
+ β

[
πISV

IS
t+1 + πRV

OR
t+1 + (1 − πIS − πR)V Pt+1

]
, (4.11)

where the tested-positive individual can develop symptoms with probability πIS and, in this case, the individual

will receive the utility V ISt+1 in the next period. The health status of the tested-positive individual can also change

to observed recovered with probability πR and, in this case, the individual will receive the utility V ORt+1 in the next

period. If the tested-positive individual neither develops symptoms nor recovers, they will remain in their current

status.

Budget constraint for the quarantined agents. Tested-positive agents are subject to quarantine until they

recover. Thus, the maximization problem for these agents is subject to the following budget constraint

(
1 + µQc + αµLc,t

)
cPt = wPt n

P
t + ΓQt , (4.12)

where µQc proxies the effects of imposing a quarantine on individuals’ consumption and labor decisions. Lock-

downs are assumed to affect consumption of quarantined subjects as well. The parameter α ∈ (0, 1) controls the

additional effects of lockdown measures on quarantined agents’ consumption. The tax paid by quarantined agents

is rebated to them, ΓQt .
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4.2.4 Infected Symptomatic Agents

As the symptoms of the disease are developed, agents observe their health status, which becomes infected

symptomatic. An infected symptomatic subject chooses consumption cISt and nISt so as to maximize

V ISt = max
cISt ,nISt

u
(
cISt , nISt

)
+ β

[
πRV

OR
t+1 + (1 − πR − πD)V ISt+1

]
, (4.13)

subject to the budget constraint for quarantined subjects, which is shown for the tested-positive agents in equation

(4.12). The probability πR denotes the probability that the health status of the infected symptomatic individual

changes to observed recovered and the individual will receive V ORt+1 in the next period. The probability πD denotes

the probability that the infected symptomatic individual dies and, in this case, they will get zero utility forever. If

neither events happen, the infected symptomatic individual will not change their health status in the next period.

The equilibrium wage paid to the agents is determined by the agent’s marginal productivity of labor, which is

assumed to be lower when the symptoms of the disease are developed. This penalty on labor productivity is given

by ϕ < 1.

4.2.5 Observed Recovered Agents

Observed recovered agents are agents who know they have been infected at some point in the past either because

they tested positive or they showed the symptoms of the disease. Since they have become immune to the virus,

their health status will never change again and their decision problem reads:

V ORt = max
cORt ,nORt

u
(
cORt , nORt

)
+ βV ORt+1 , (4.14)

subject to the budget constraint for non-quarantined subjects in equation (4.10).

4.2.6 The Government Budget Constraint

The government balances its budget in every period by satisfying the conditions

µLc,t
[
Ct + α

(
CISt + CPt

)]
= ΓLt

(
St + IAt +RUt +ROt + (1 − α)

(
ISt + Pt

))
, (4.15)

µQc · CISt = ΓQt · ISt , (4.16)

µQc · CPt = ΓQt · Pt, (4.17)

where we denote the share of susceptible individuals with St, the share of untested asymptomatic individuals with

IAt , the share of symptomatic infected individuals ISt , the share of positive-tested individuals with Pt, the share of

unobserved recovered with RUt , and the share of observed recovered individuals with ROt . Recall that Ct denotes

consumption of non-quarantined agents. CISt ≡ cISt ISt and CPt ≡ cPt Pt stand for total consumption of the
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infected symptomatic agents and that of the tested-positive agents, respectively. There is no fiscal redistribution.

The revenue of the lockdown and quarantined taxes are rebated to the agents these taxes are levied on.11

4.2.7 Dynamics of Agents’ Types

We now describe the evolution of the six types of agents. The law of motion for the share of susceptible agents

reads St+1 = St − Tt, where Tt denotes the share of newly infected subjects in period t. This share is defined

using the law of large number as follows: Tt = τt · St, where τt is the expected probability for susceptible

individuals to become infected – defined in equation (4.5).

The size of untested asymptomatic agents evolves according to the law of motion

IAt+1 = (1 − πTP,t)Tt + (1 − πAP,t)(1 − πIS − πR)IAt , (4.18)

This set of agents are given by those who were untested asymptomatic IAt at the end of the previous period and

have not developed symptoms, recovered, or tested positive at the end of the current period. Moreover, subjects

who have become infected in this period, Tt and have not tested positive will also join the set of the untested

asymptomatic subjects in the next period.

The pool of tested positive subjects is given by

Pt+1 = (1 − πIS − πR)Pt + πTP,tTt + πAP,t(1 − πIS − πR)IAt . (4.19)

Tested-positive subjects in the current period are people who had this health status at the end of the previous

period and have neither developed symptoms nor recovered. The infected agents who have just tested positive

also join the positive tested pool.

The pool of infected symptomatic people evolves as follows:

ISt+1 = (1 − πR − πD)ISt + πIS(IAt + Pt). (4.20)

A fraction of infected symptomatic agents recovers or dies in the period and the remainder remain infected

symptomatic. Untested asymptomatic and tested-positive agents can develop symptoms and become symptomatic

infected subjects.

The share of unobserved recovered evolves as follows: RUt+1 = RUt + πRI
A
t . This health status is an

absorbing state and the magnitude of this set of agents is increased by untested asymptomatic agents who recover

in every period. The share of observed recovered evolves as follows: ROt+1 = ROt + πR(Pt + ISt ). This health

status is also an absorbing state and the magnitude of this set of agents increases as tested-positive and infected

symptomatic agents recover.

11We abstract from fiscal policy in this study, which is primarily focused on assessing the efficacy of contact
tracing. Bianchi et al. (2020), Mitman and Rabinovich (2020), and Hagedorn and Mitman (2020) study how fiscal
policy should respond to pandemic recessions.
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The measure of population is given by the sum of these six groups. Note that the population size may vary

because infected people die. The share of agents who have died by period t+ 1 is given by Dt+1 = Dt + πDI
S
t .

The only two variables we have not yet defined are the probability of testing positive for newly infected

agents, πTP,t, and untested asymptomatic agents, πAP,t. The characterization of these probabilities is the object of

the next section.

4.3 Contact Tracing and Testing

Health officials test subjects whose health status is unknown; that is, susceptible, untested asymptomatic, and

unobserved recovered agents. In our model, an agent can be infected and remain asymptomatic throughout their

entire infection. These agents are undiscovered spreaders who keep infecting susceptible agents until they recover

or get quarantined because they test positive or become symptomatic. Tests do not reveal when a positive agent

was infected or whether a negative agent is still susceptible to getting infected or has recovered. Results can be

false-negative.

Contact tracing is a testing strategy whose aim is to ex-post reconstruct as much as possible of the newly

symptomatic cases’ infection chain; i.e., the network of interactions that led a newly symptomatic case to become

infected or to infect other agents. How much of the infection chain can be known by health officials defines the

efficiency of the contact tracing technology. We consider two levels of efficiency of the tracing technology: a

basic technology that allows health officials to trace only those contacts that have occurred during the current

week and a comprehensive technology that allows them to trace contacts up to one week back.

It is useful to resort to a graphical example to illustrate how contact tracing works in the model. In Figure 4.1,

agent A, who caught the virus in period t− 2, infects agent B in period t− 1. In the next period, agent A infects

further two agents, who are denoted by C and D. At the same time, agent B also infects agent E. In period t, agent

A also met subject Z, who was however infected by subject V. The gray line connecting subject A and Z means

that this was a non-infectious meeting. The other subjects, who are denoted by dashed green circles, are agents

that were not infected by meeting with one of the untested asymptomatic subjects, who are denoted by blue solid

circles.

Let’s assume that subject A turns symptomatic in period t. The basic tracing technology would allow health

officials to trace the newly infected subjects C, D, and Z. However, subjects B and E, who belong to the same

infection chain originated by subject A, cannot be traced. It is important to note that subject Z does not belong

to agent A’s infection chain as subject Z was infected by subject V. However, subject Z has randomly met with

subject A in period t and is thereby traceable. If the comprehensive tracing technology is available, then subject

B can also be traced.

Let’s suppose that subject B turns symptomatic in period t while subject A is still untested asymptomatic.

The basic technology would discover subject E. By allowing subject B’s contacts to be traced in the earlier period

t − 1, the comprehensive technology allows health authorities to find out that subject A is an asymptomatic

spreader. Since subject A infected subject B, the detection of subject A is called backward tracing. The basic
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Figure 4.1 Example of an infection chain. The blue solid circles indicate an asymptomatic person. The green dashed circles
are susceptible or recovered agents. The red lines describe an interaction that leads to an infection, while the gray lines
describe an interaction that does not lead to an infection.

technology does not allow health authorities to trace backward as it takes at least one period for newly infected

subjects to become symptomatic.

It is important to note that the basic tracing technology can catch asymptomatic agents who went untested in

the previous periods only if these agents meet randomly with a subject who turn symptomatic in the current period.

These random meetings are fairly rare, as we will show in Sections 4.3.1 and 4.4. In contrast, the comprehensive

technology allows the health authorities to leverage the infection chain of the newly symptomatic agents to

detect asymptomatic spreaders that were not caught in previous periods. An example is the backward tracing of

agent A when agent B turns symptomatic. Hence, the comprehensive technology is more effective in detecting

asymptomatic spreaders the testing system failed to catch in previous periods.

Health authorities could also launch a second round of tests by reconstructing the network of contacts of those

agents who tested positive in the first round. We deal with this extension in Section 4.6.

Testing Probabilities The probability of catching a spreader depends on (i) the probability of tracing this

subject; (ii) the testing capacity in period t, Υt, relative to the number of people traceable Et; (iii) the probability

of a false negative (πF ). As we will show, the efficiency of the tracing technology influences the probability of

being traced and the number of traceable subjects in a given period.

Formally, for given efficiency of the tracing technology, the probability that a newly infected subject infected

(i = T ) or an untested asymptomatic subject (i = A) tests positive in period t is

πiP,t = πiC,t · πT,t · (1 − πF ) , i ∈ {T,A}, (4.21)

where the probability πiC,t denotes the probability of being traced for a subject of type i and the probability πT,t

denotes the probability of being tested conditional on being traced by the government. As we shall explain, this
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probability depends on the testing capacity Υt, and the number of agents that are traceableEt. This decomposition

implies that a subject has to be traced before being tested. The case in which all the traced subjects are quarantined

is discussed in Section 4.6.

Coordination Failure and the Collapse of the Testing System. The magnitude of the variable Υt relative to

the number of traceable people, Et, plays the role of a critical bottleneck that can lead to the collapse of the

tracing and testing system in our model. Agents fail to realize that their consumption and labor decisions have

externalities on the number of traceable subjects, Et, health authorities will have to test a few periods later. This is

because of two reasons. First, those agents whose health status is unknown do not appreciate that as they increase

their consumption or labor, the overall amount of interactions in the economy will increase and, thereby, newly

symptomatic agents will end up having more traceable contacts. Second, untested asymptomatic subjects fail

to realize that by consuming or working more, more people will become infected, raising the number of newly

symptomatic cases in every period.12 A larger number of newly symptomatic cases enlarges the pool of subjects

who met with them and are, thereby, traceable.

These externalities may lead the number of traceable contacts Et to rise to the point at which the testing

system collapses, with very severe consequences for the economy. When the number of traceable contacts largely

exceeds the testing capacity, Υt, the probability for traceable people to be tested, πT,t, falls and, with it, the

probability for untested asymptomatic subjects to test positive, πiP,t, i ∈ {T,A} in equation (4.21). Consequently,

the number of asymptomatic spreaders starts increasing out of control and the spread of the virus accelerates. The

economy contracts sharply as the heightened probability of becoming infected, τt, causes non-quarantined agents

to want to reduce economic interactions so as to minimize the probability of catching the virus and dying.13

In the reminder of this section, we will characterize the probability for a newly infected and an untested

asymptomatic subject to be traced (πTP,t and πAP,t, respectively) under the basic tracing technology and under the

comprehensive tracing technology.

4.3.1 Basic Contact Tracing Technology

The basic contact tracing technology allows health authorities to trace only those contacts that occur in the current

week. It is useful to combine the binomial distributions in equation (4.1), (4.2), and (4.3) to obtain the probability

for an agent who does not know their health status to meet k-times with the set of untested asymptomatic subjects

while consuming, working, and performing other activities:

ft(k) ≡
k∑
i=0

k−i∑
j=0

fc,t(i)fn,t(j)fo,t(k − i− j). (4.22)

12These externalities would not be eliminated if these subjects knew to be asymptomatic spreaders.
13There is another source of externality in the model. Agents do not internalize that their consumption and

labor decisions affect how many people will become infected in the economy as a whole and, hence, ultimately
their probability of getting infected. Eichenbaum et al. (2020a) study the implications of these externalities in
great detail. In our model with contact tracing and testing, these externalities do not play any significant role.
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Conditional on meeting k asymptomatic subjects in period t, the probability that at least one of these subjects

becomes symptomatic in the same period is 1 − (1 − πIS)k. Hence, the probability for a subject who does not

know their health status to be traced in period t is

πSC,t = πAC,t = πURC,t =
φC(cst )+φN (nst )+φO∑

k=0

[
1 − (1 − πIS)k

]
ft(k), (4.23)

implying that the probability of being traced is the same for the three unobserved types: susceptible (S),

untested asymptomatic (A), and unobserved recovered (UR). This is because these agents consume and work

the same amount as shown in Section 4.2.2. As a result, they will have the same number of total interactions

φC(cst ) + φN (nst ) + φO and the same probability of meeting with k untested asymptomatic agents.

The probability πAC,t in equation (4.23) is the sought probability for an untested asymptomatic agent to be

traced in period t.

We now work out the probability for a newly infected subject to be traced, πTC,t. Newly infected subjects are

susceptible at the beginning of the period and become infected because they have met an untested asymptomatic

individual. Thus, we have to condition the probability distribution that a susceptible agent has met k untested

asymptomatic subjects in period t – ft(k) defined in equation (4.22)– on the fact that the newly infected agent

has met at least one untested asymptomatic subject, i.e., the agent who infected them. To do so, we apply the

Bayes theorem to obtain:

fTt (k) = ft(k)τ̃(k)
τt

, (4.24)

where τ̃(k) ≡
[
1 − (1 − τ)k

]
is the probability to get at least one infectious contact out of k interactions, and

recall that τt stands for the average probability for susceptible subjects to become infected in period t, which is

defined in equation (4.5). Following the same reasoning behind the probability in equation (4.23), we characterize

the probability for a newly infected individual to be traced as

πTC,t =
φC(cst )+φN (nst )+φO∑

k=0

[
1 − (1 − πIS)k

]
fTt (k). (4.25)

As noted at the beginning of this section where we analyzed Figure 4.1, an untested asymptomatic subject can

only be traced if they have met a newly symptomatic subject randomly. The application of the Bayes theorem in

equation (4.24) adjusts the probability distribution fTt (k) to factor in that the newly infected subject belongs to

the infection chain of an agent who was untested asymptomatic at the beginning of the period. This is important

as this untested asymptomatic agent may turn symptomatic with probability πIS . The event that the subject

who infected the newly infected agent turns symptomatic is more likely than the joint event that an untested

asymptomatic agent has randomly met another untested asymptomatic agent (
∑
k>1 ft(k)) and the latter agent

turns symptomatic. Therefore, an untested asymptomatic is less likely to be traced than a newly infected agent

under the basic tracing technology (πTC,t > πAC,t).
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In Figure D.7 of Appendix D.8, we show the unconditional and the conditional distributions ft(k) and fTt (k)

in one simulation where the basic contact tracing technology leads to a successfully control of the pandemic. As

one can see, the probability of catching an untested asymptomatic subject is dwarfed by the fact that these subjects

are very unlikely to meet randomly with other untested asymptomatic, who can turn symptomatic. Conditioning

on the fact that newly infected agents have met at least one untested asymptomatic subject causes the mode of the

probability fTt (k) to shift from k = 0 to k = 1, making tracing more likely.

Probability of Testing Positive under the Basic Tracing Technology. The basic contact tracing technology

endows health authorities with the list of contacts of the newly symptomatic agents in period t. Health authorities

look at the contacts with individuals whose health status is unknown (i.e., contacts with observed recovered

individuals are discarded). We call this set of traceable individuals the exposed. The measure of this set is given

by

Et = πSC,t · St + πAC,t · (1 − πIS) IAt + πURC,t ·RUt , (4.26)

where πSC,t, π
A
C,t, and πURC,t are the probabilities of being traced for the three types of agents who do not know

their health status. These probabilities were defined in equation (4.23). We adjusted the share of the untested

asymptomatic subjects who were exposed by taking out those who have revealed symptoms (πISIAt ) in period t.

Health authorities do not know the health status of susceptible, untested asymptomatic, and unobserved

recovered individuals and hence they cannot tell these three types of subjects apart when it comes to deciding

who to test. Therefore, the probability of testing a traceable contact does not depend on the contact’s health status

and is then defined as

πt,T = min
(

1, Υt

Et

)
, (4.27)

where recall Υt ≥ 0 denotes the testing capacity of policymakers in every period, which is an exogenous variable.

We substitute equations (4.25) and (4.27) into equation (4.21) to obtain the probability of testing positive for newly

infected subjects, πTP,t. Substituting both the probability πAC,t of equation (4.23) and the conditional probability

of being tested of equation (4.27) into equation (4.21) allows us to pin down the probability of testing positive for

subjects infected in earlier periods, πAP,t. The probabilities πAP,t and πTP,t, in turn, pin down the dynamics of types

in equations (4.18) and (4.19) for the basic contact tracing technology.

4.3.2 Comprehensive Contact Tracing Technology

With the comprehensive contact tracing technology, the government can also trace the contacts that occurred

in period t − 1 with subjects who become newly symptomatic in period t. The objective of this section is to

characterize the probabilities for newly infected and untested asymptomatic subjects to be traced based on contacts

established in period t− 1. The probability for these two subjects to be traced based on the contacts they had in

period t is identical to the ones derived before under the basic contact tracing technology.
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To derive these probabilities, it is useful to condition to three types of agents and to two types of links. The

three types are as follows: (i) Type-A agents are asymptomatic subjects in period t infected earlier than t− 1; (ii)

Type-T agents are asymptomatic subjects in period t who became newly infected in period t− 1; (iii) and Type-S

agents are subjects who became newly infected in period t. These letters are chosen to denote the health status of

asymptomatic subject in period t− 1: A for untested asymptomatic, T for newly infected, and S for susceptible.

Note that the Type-A and Type-T agents have not tested positive, or recovered, or developed symptoms before

testing is performed in period t.

The two links are as follows: (i) A-links stand for those contacts that the three types of subjects had in period

t− 1 with agents who became infected before period t− 1; (ii) and T-links mean those contacts that the three

subjects had in period t− 1 with agents that become infected in period t− 1. These letters denote the health status

of the subjects with which the three types of agents have interacted in period t− 1: A for untested asymptomatic

and T for newly infected. We care about these two types of links because they connect the three types of subjects

to those agents who may become symptomatic in period t.14

Type-A agents: asymptomatic subjects in period t who were infected earlier than t-1. Since Type-A

subjects were already asymptomatic in period t − 1, they may have infected susceptible individuals in period

t − 1 and these individuals may become symptomatic in period t. Creating their own infection chain raises

the probability for Type-A agents to be traced. Indeed, these additional traceable links create the possibility of

backward tracing, which was illustrated in the graphical example of Figure 4.1. The probability for a Type-A

subject to have k T-type links in period t− 1 can be written as the sum of binomials

fA,Tt−1 (k) ≡
k∑
i=0

k−i∑
j=0

fA,Tc,t−1(i)fA,Tn,t−1(j)fA,To,t−1(k − i− j), (4.28)

where the first superscript of the probability distribution f denotes the agent’s type – in this case A – and the

second superscript denotes the links’ type – in this case T-links. The distributions on the right-hand-side are

binomial distributions which are defined as follows:

fA,Tc,t−1(k) ≡ B
(
k, φc

(
cst−1

)
,

[τ + (1 − τ)τt−1]CSt−1
Ct−1

)
, (4.29)

where the distribution regarding labor-based interactions, fA,Tn,t−1, and that regarding non-economic interactions,

fA,To,t−1, are analogously defined.

The probability [τ + (1 − τ)τt−1] C
S
t

Ct
can be decomposed into two parts. The first part τ C

S
t

Ct
captures the

chance for the Type-A agent to meet with a susceptible individual and to infect them. In this case, the asymptomatic

subject has added one more case to their own infection link which could potentially make them traceable via

14Recall that it takes at least one period for newly infected agents to develop symptoms. Thus, the probability
of meeting in period t− 1 with subjects who will then become newly infected in period t (Type-S link) does not
affect the probability of being traced in period t.
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backward tracing.15 In the example illustrated in Figure 4.1, this first case corresponds to the infectious meeting

between subject A and subject B.

The second part is the product of the probability of not infecting the susceptible subject (1 − τ) times the

probability that some other asymptomatic agents will infect the subject in period t−1 (i.e., the average probability

τt−1). Note that in this second case, the Type-A agent has a random, non-infectious meeting with an agent that

will be infected by someone else. This random, non-infectious meeting creates a traceable link for the Type-A

agent in period t even though this meeting does not belong to Type-A agent’s infection chain. In the example

illustrated in Figure 4.1, this second case corresponds to the meeting between subject A and subject I in period

t− 1. This meeting is not infectious as subject I is infected by subject N in the same period.

While both events create a T-link for the A-type agent, in the first case only one event has to happen (the

Type-A agent infects the susceptible subject), whereas in the second case two events have to jointly happen

(the Type-A agent does not infect the susceptible individual and the susceptible individual becomes infected by

meeting another agent). Thus, the first event is generally more likely than the second chain of events. In our

empirical simulation, backward tracing raises the probability for a Type-A agent to be traced considerably, while

the probability for a Type-A agent to be traced via a random, non-infectious meeting with an agent that will later

become symptomatic is quite tiny.

Untested asymptomatic subjects in the periods earlier than t− 1 have the following probability to have met

k-times with other asymptomatic subjects who got infected in periods earlier than t− 1:

fA,At−1 (k) ≡
k∑
i=0

k−i∑
j=0

B
(
i, φC(cst−1),

CAt−1
Ct−1

)
B
(
j, φN (nst−1),

NA
t−1

Nt−1

)
B
(
k − i− j, φO,

IAt−1
Popt−1

)
.

(4.30)

Since A-links involve subjects who are already infected, all meetings are random (i.e., non-infectious).

Type-T agents: asymptomatic subjects in period t who were infected in period t-1. The probability for

Type-T agents to have k T-links in period t− 1 is

fT,Tt−1 (k) ≡
k∑
i=0

k−i∑
j=0

B
(
i, φC(cst−1),

cst−1Tt−1

Ct−1

)
B
(
j, φN (nst−1),

nst−1Tt−1

Nt−1

)
(4.31)

× B
(
k − i− j, φO,

Tt−1

Popt−1

)
,

where cst−1Tt−1 and nst−1Nt−1 denote the total consumption and labor of the newly infected subjects in period

t− 1.

15The probability τ is the probability of infecting the subject conditional on meeting a susceptible subject. See
Assumption 4.
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The probability for Type-T agents to have k A-links can be constructed from the probability for Type-A

agents to have k A-links, fA,At−1 in equation (4.30), by applying the Bayes theorem

fT,At−1 (k) =
fA,At−1 (k) τ̃(k)

τt−1
, (4.32)

where the variable τ̃(k) is defined in equation (4.24) and the rate τt is the average infection rate defined in

equation (4.5). Correcting the distribution fA,At−1 is needed because, unlike Type-A agents, Type-T agents must

have met at least one untested asymptomatic in period t − 1; i.e., the individual who has infected the Type-T

agent.

Analogously to the distribution in equation (4.24), the application of the Bayes theorem adjusts the distribution

fA,At−1 , which only reflects random meetings, to factor in that every Type-T agent belongs to the infection chain of

an agent who was untested symptomatic in period t− 1.

Type-S agents: newly infected subjects in period t. Since, unlike Type-A agents, who can expand their own

infection chain in period t− 1, Type-S and Type-T agents cannot infect anyone in that period, they will have the

same probability to have k T-links in period t− 1: fS,Tt−1 = fT,Tt−1 .

The probability for Type-S agents to have k A-links in period t − 1 can be constructed starting from the

probability for Type-A agents to have k A-links in the same period. However, we need to take into account that

for Type-S agents, none of these meetings with untested asymptomatic subjects triggered an infection. For this,

we use again the Bayes theorem

fS,At−1 (k) =
fA,At−1 (k) (1 − τ̃(k))

1 − τt−1
. (4.33)

Time Adjustments and Active Links. Since tracing is conducted in period t, the probability distributions for

Type-A and Type-T subjects have to be conditioned on the event that these subjects have remained untested

asymptomatic through period t. Furthermore, some of the A-links are not relevant for traceability and testing in

period t because infected asymptomatic subjects may become symptomatic or recover or test positive in period

t− 1. T-links could also become non-relevant for traceability and testing in period t because some of the newly

infected agents test positive at the end of period t− 1. Therefore, it is convenient to distinguish between total

links (or simply links) and active links, which are those links with infected people who may still reveal symptoms

in period t, making the subjects traceable in that period.

We show how to condition the six probability distributions, f l,it−1, with i ∈ {A, T, S} l ∈ {A, T} on these

two events in Appendix D.1. These adjustments lead to the probability of being traced in period t for Type-A,

Type-T, and Type-S agents because of the contacts they established in period t− 1. We denote these probabilities

by π1,i
C,t, with i ∈ {A, T, S}. Notationally, these probabilities have the subscript t to remind that tracing is carried

out in period t. The probabilities of being traced for an asymptomatic agent or a newly infected agent through

their contacts established in the current week t are denoted by π0,i
C,t, with i ∈ {A, T} and are the same as πiC,t,

with i ∈ {A, T}, derived in Section 4.3.1.
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Probability of Testing Positive under the Comprehensive Tracing Technology. We use the decomposition

in equation (4.21) to define the probability of being tested positive at time t through contacts established in the

previous period16

πj,iP,t = πj,iC,t · πjt,T · (1 − πF ), i ∈ {A, T, S} j ∈ {0, 1}, (4.34)

where j denotes the period t − j when the contacts relevant for tracing were established. So we combine the

probability of being traced, πj,iC,t, with the probability of testing positive which depends on the ratio of the test

availability at time t, i.e., Υt, and the number of subjects who were exposed either in period t− 1 or in period t.

The share of agents exposed to infected subjects showing symptoms in period t is denoted by E0
t and is defined

exactly as Et in equation (4.26). We denote the subjects who in period t − 1 have met agents who become

symptomatic in period t, as E1
t , which is formally defined in Appendix D.4.

Tests are administered following a Pecking order: First government uses all the available tests to check the

current period’s contacts and if any tests are left, they are used to test the previous period’s contacts. Pecking

order is optimal because subjects who were untested asymptomatic in the previous period may have recovered

before testing is performed.

The probability of being tested conditional on being traceable in period t is denoted by π0
t,T and defined in

equation (4.27). Given the Pecking order, the probability of being tested conditional on being traceable in period

t− 1 is given by

π1
T,t = min

(
1,

max
(
0,Υt − E0

t

)
E1
t

)
. (4.35)

Note that the probability of testing positive defined in equation (4.34) is conditioned on the type of the agents

in period t− 1 (i.e., Type-A, Type-T, and Type-S). Recall that what we are ultimately interested in is to pin down

the dynamics of types in equations (4.18) and (4.19), which requires us to know the average probability for an

untested asymptomatic subject to test positive in period t (πAP,t) and the average probability for newly infected

subjects to test positive in period t (πTP,t).

The average probability for an untested asymptomatic subject in period t to test positive in the same period

under the comprehensive contact tracing technology is

πAP,t =
IAt−1 (1 − πIS − πR)

(
1 − πAP,t−1

)
IAt

·
[
π0,A
P,t + (1 − π0,A

C,t ) · π1,A
P,t

]
(4.36)

+
Tt−1

(
1 − πTP,t−1

)
IAt

·
[
π0,A
P,t + (1 − π0,A

C,t ) · π1,T
P,t

]
,

where the first expression within square brackets denotes the probability for a Type-A agent to test positive in

period t and the expression within the second square bracket is the probability for a Type-T subject to test positive

16Note that π0,S
C,t is the probability for a susceptible agent to test positive in period t, which is zero.
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in period t.17 The two bits outside the square brackets weigh the share of Type-A and Type-T with respect to the

amount of untested asymptomatic cases in period t. This adjustment is needed as the transition in equation (4.18)

is expressed in terms of the size of the untested asymptomatic subjects at time t.

The average probability for a newly infected subject to test positive in period t under the comprehensive

contact tracing technology is given by

πTP,t = π0,T
P,t + (1 − π0,T

C,t ) · π1,S
P,t . (4.37)

4.4 Model Solution and Calibration

We use the model to study the response of epidemiological and economic variables following a surprise shock that

initially infects a tiny share of the population. To this end, we solve the model iteratively based on a numerical

root finder that computes the sequence of policy functions and the evolution of the measure of agent types for a

given number of periods. This computation is performed for a given sequence of taxes and for a given initial

amount of asymptomatic and symptomatic agents infected by the shock. More details are in Appendix D.6.

We use the approximated infection rate in equation (4.6) to solve the decision problem of the agents (see

Section 4.2.2) and to compute the dynamics of types in Section 4.2.7. To pin down the probabilities of getting

tested (πTP,t and πAP,t) in Section 4.3, we use the exact definition of the rate τt in equation (4.5).

The calibrated parameters of the model are summarized in Table 4.1. The economic parameters are calibrated

based on Eichenbaum et al. (2020a). We set the weekly discount factor to 0.961/52. This number is standard and

implies the value of a statistical life of roughly 10 million 2019 U.S. dollars, which is in line with what other

studies assume (e.g., Eichenbaum et al. 2020a).18 Productivity, A, is set to match a yearly income of $58,000.

The scale parameter of labor disutility, θ, is calibrated so that agents work on average 28 hours per week. The

Frisch labor elasticity φ is 0.5.

The epidemiological parameters are calibrated to the recent COVID-19 crisis in the US. A key epidemiological

parameter is τ , which is the probability that one interaction with an infected subject results in an infection (see

Assumption 4). We set this parameter to 5% based on evidence from the World Health Organization (2020).19 The

parameters φC , φN , φO determine the number of interactions required to support levels of individual consumption

cst , labor nst , and other non-economic activities, respectively. The original step functions φC(ct) and φN (nt)

are shown in the Appendix D.8 (see Figure D.6). We set the parameters φC and φN so that consumption- and

labor-based transmissions of the virus account for a share of 1/3 each, when consumption and labor decisions

are fixed to the pre-pandemic level. These targets are chosen consistently with the influenza study by Ferguson

17It should be noted that these probabilities for Type-A and Type-T to test positive in t reflect the Pecking
order: If an agent is traced via their time-t contacts, they will not be tested via their time-(t− 1) contacts.

18The present discounted value of a life in current consumption units is V uc = 1
1−βu(c, n)AN , where V is

the discounted value and uc is the marginal utility of consumption.
19This WHO report analyses the probability of an infection for an individual that had close contact with an

individual who tested positive for COVID-19 is between 1% and 5%. The study had identified around 40,000
people as close contacts and was conducted in mid-February in three Chinese cities with very active contact
tracing.
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Table 4.1 Calibration

Parameters Sign Value Target / Source
(a) Economic parameters
Discount factor β 0.961/52 Conventional discount factor
Labor disutility θ 0.13% Weekly working hours of 28
Productivity A 39.84 Yearly income 58,000$
Frisch labor elasticity φ 0.5 Literature
(b) Epidemiological parameters
Interaction via consumption φC 0.99% Consumption-based interactions 33%
Interaction via labor φN 0.39 Labor-based interactions 33%
Interaction independently φO 10 Basic reproduction number R0 = 2
Probability of infection τ 5% World Health Organization (2020)
Recovery rate πR 7/18 Average recovery rate = 18 days
Symptomatic rate πIS 7/18 Share of symptomatic cases = 50%
Mortality rate πD 0.6% Infection fatality rate = 0.3%
False negative outcome πF 0 False positive probability = 0
Quarantine policy µQ 1 Quarantine lowers C and L by 30%
Productivity symptomatic ϕ 0.8 Eichenbaum et al. (2020a)
Lockdown effect in quarantine α 0 No impact besides quarantine
Initial infection ϵ 0.1% Infections March 16 2020

et al. (2006).20 The parameter φO is set to target the basic reproduction number R0, which is the total number of

infections caused by one infected person (with measure zero) in their lifetime in a population where everybody is

susceptible and no containment measures (including testing) are taken.21 We set the basic reproduction number to

2 in line with the evidence about the early transmission of COVID-19.22 The calibration implies a total amount

of 30 interactions in the pre-epidemic economy, which is broadly in line with surveillance data from infected

agents.23

In line with evidence from the World Health Organization (2020), we choose that an agent recovers on

average after 18 days, which implies πR = 7/18.24 We calibrate the probability of developing symptoms, πIS ,

so that 50% of infected agents develop symptoms at some point of the pandemic crisis, which is in line with

the symptomatic rate estimated by Baqaee et al. (2020b).25 A key metric in parameterizing a SIR model is the

20Eichenbaum et al. (2020a) provide an alternative interpretation of the same influenza study and argue that
labor and consumption interactions are only responsible for 1/6 each. While targeting this lower number would
not change our main results significantly, it implies that a plausible lockdown in our model would fail to push the
effective reproduction number below one, which is at odds with the evidence shown by Wang et al. (2020).

21In our model, the number is defined as R0 =
∑∞
j=0

[
τ1(1 − πr − πD)j

]
= τ1

πr+πD .
22For instance, Li et al. (2020) find a basic reproduction number of 2.2 based on the first 425 confirmed patients

in Wuhan (China), and Zhang et al. (2020) estimate the reproduction number to be around 2.3 using data based
on the Diamond Princess cruise ship in Feburary, where a COVID-19 outbreak occurred.

23For the first nine cases in the U.S., Burke et al. (2020) find that an infected person had up to 45 contacts.
Pung et al. (2020) show that a a COVID-19 infected person requires the quarantine of 12 contacts in Singapore in
February.

24The WHO reports an average recovery rate of 2 weeks for mild cases and 3 to 6 weeks for severe cases.
25There is mixed evidence about this rate. Based on a population screening in Iceland, Gudbjartsson et al.

(2020) find that 57% of the positive-tested cases report symptoms. However, almost 30% of negatively tested
individuals also report symptoms in the same study. Poletti et al. (2020) find that 74% of positive-tested contacts
of indexed COVID-19 cases did not develop symptoms for individuals below 60 years of age. Nishiura et al.
(2020a) suggest a 69% infection rate based on evacuation flights of Japenese passengers data from China.
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infection fatality rate, which measures the amount of deaths relative to all infectious cases. The mortality rate

πD is the infection fatality rate divided by the share of symptomatic agents. This rate is calibrated to target an

infection fatality rate of 0.3% based on Hortaçsu et al. (2020), who adjust the fatility rate to take into account

unreported infections.26

In the model, symptomatic agents are subject to a labor productivity penalty, ϕ. We calibrate the penalty

ϕ = 0.8 based on Eichenbaum et al. (2020a). Furthermore, infected symptomatic agents and tested-positive

agents are quarantined, which is modeled as a tax on consumption, µQc . This tax implies that at steady state the

consumption and labor of a positive-tested agent is lower than those of non-quarantined (non-recovered) agents

by approximately 30%. We assume that quarantined agents are not affected by the lockdown, that is α = 0. We

set the probability of a false negative outcome πF to zero. The initial share of infected agents ϵ is set to 0.1% and

is divided evenly between asymptomatic and symptomatic agents. Following Berger et al. (2020), this can be

interpreted as the amount of infections adjusted for unreported cases on March 16, 2020.

4.5 Quantitative Analysis of Contact Tracing

To better understand the results shown in this section, it is useful to define an epidemiological variable that gauges

the speed at which the virus is spreading: the effective reproduction number. This number captures how many

susceptible people an untested asymptomatic agent infects on average during the spell of their illness.

The effective reproduction rate is affected by the efficiency of the tracing technology, the testing capacity (Υt),

the amount of economic interactions that depend on non-quarantined agents’ decision to consume and work, and

the stringency of the containment policies (lockdowns) put in place by policymakers. An effective reproduction

number above 1 indicates a situation in which the virus is infecting more and more people over time, while a

number below 1 signifies that the virus is retracting. The effective reproductive number in our model is defined as

REt = (1 − πTP,t−1)
[
τt + (1 − πIS − πR)

(
1 − πAP,t

)
τt+1+

(1 − πIS − πR)2 (1 − πAP,t
)

(1 − πAP,t+1)τt+2 + . . .
]

= (1 − πTP,t−1)
∞∑
j=0

(
τt+j(1 − πIS − πR)jΠj

k=0
(
1 − πAP,t+k

))
. (4.38)

The effective reproduction number conflates current and future probabilities for non-quarantined infected agents

to be caught. The efficiency of the tracing technology and the testing capacity (Υt) mainly influence the effective

reproduction number by affecting the probability for newly infected subjects and for untested asymptomatic

subjects to test positive at the end of period t; that is, πTP,t and πAP,t, respectively. Lockdowns lower the effective

reproduction number primarily by reducing the infection rate, τt.

26This value is supported by Nishiura et al. (2020b), who find a range of 0.3% to 0.6% with Japanese data
and by Streeck et al. (2020) who estimate 0.36% based on German data. Fernández-Villaverde and Jones (2020)
estimate a higher mortality rate of 1%.
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It is important to note that the reproduction number is more sensitive to changes in the probability for a newly

infected agent to test positive, πTP,t−1, than to changes in the future probability for an untested asymptomatic

agent to test positive, πAP,t+k. The reason is that asymptomatic agents may turn symptomatic or recover in

every future period and, when they do, they will stop infecting other people. The transience of the status of

being asymptomatic, which is captured by the term (1 − πIS − πR) in equation (4.38), implies that increasing

the probability of catching asymptomatic agents further in the future has decreasing effects on the effective

reproduction number. This suggests that the efficacy of a testing strategy critically hinges on delivering a high

probability of capturing newly infected people (i.e., πTt close to 1). This is an important point that helps explain

some of the results shown in this section.

4.5.1 Contact Tracing with Unlimited Tests

It is interesting to start with a scenario in which tests are always sufficient to cover all the contacts of newly

symptomatic subjects. This scenario sheds light on the efficacy of the two contact-tracing technologies in the

most favorable environment where testing capacity is never binding. In addition, this exercise will give us a sense

of how many tests would be needed to make contact tracing work at its best.

In this scenario, we also consider random testing as an alternative to contact tracing, which has been advocated

by Romer (2020) among other scholars.27 It is assumed that random testing is run on a testing capacity of 20%

of the initial population over the entire simulation horizon. This implies a daily testing capacity of close to 10

million daily tests. To put this number in perspective, in the U.S. the daily testing capacity was around 1 million

tests per day in September 2020. We also consider the case in which no testing is performed.

Figure 4.2 shows the evolution of the key epidemiological, economic, and testing variables.28 Beginning with

the case in which no one is tested (the yellow dashed-dotted line), the pandemic spreads very fast and causes many

people to become infected. The pandemic crisis fades away when 60% of the population becomes infected and

herd immunity is reached. In total 0.4% of the population dies because of the pandemic. In response to the surge

in the probability of getting infected, agents reduce their interactions by drastically lowering consumption and

labor. As a consequence, the economy goes through an extremely dreadful recession, with aggregate consumption

contracting by up to 50%.

The introduction of the basic contact-tracing technology hugely improves outcomes by slowing down the

spread of the virus and by reducing the death toll by more than 50%. See the solid blue line in Figure 4.2. As

the virus spreads less quickly (lower effective reproductive number), the chances of getting infected are reduced,

leading agents to lower their consumption and labor less dramatically compared to the case of no testing. The

reproduction number quickly drops and eventually falls below 1. As a result, herd immunity is reached with

around 20% of infected agents –three times less than the share of infected needed in the case of no testing.

While the comprehensive contact-tracing technology (the red dashed line in Figure 4.2) further mitigates the

severe consequences of the pandemic crisis, this improvement is only marginal relative to what is achieved by the

27How we formalize random testing in our model is explained in Appendix D.5.
28More variables are plotted in Appendix D.8.
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Figure 4.2 Comparison of different testing strategies with unconstrained number of tests for contact tracing: No testing (blue
solid), basic tracing (red dashed) corresponds to current week contact tracing, comprehensive tracing (green dash-dotted)
corresponds to current and previous week contact tracing and random testing (black dotted) has an amount tests available for
20% of the entire population each week.

basic tracing technology. Both tracing technologies require testing at most 4% of the population in a week, which

is substantially less than the number of tests we assume for random testing.
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The timing of the testing varies somewhat across these two tracing technologies. The basic tracing technology

requires performing more tests a few periods after the pandemic has started (around period 30) relative to the

comprehensive technology.

While this result may seem odd at first, it is important to recall that the basic technology is less effective

than the comprehensive technology in detecting untested asymptomatic subjects because the basic technology

can only trace these subjects through random meetings. As explained in Section 4.3.1, this type of meetings

are quite rare.29 As a result, in the lower right panel of Figure 4.2, the share of untested asymptomatic subjects

detected by the basic tracing technology is very low compared to the levels attained by the comprehensive

technology. As a result, in the simulation the effective reproduction number is initially higher in the case of the

basic contact-tracing technology, which justifies a faster increase in the number of traceable subjects, Et, and

hence more tests performed a few periods after the pandemic has started (around period 30). In short, under the

basic technology, you trace and test fewer people at the onset of the pandemic and this requires you to test more

people later on.

Even though random testing (the black dotted line in Figure 4.2) is assumed to have an implausibly large

testing capacity, it proves to be fairly ineffective in mitigating the outcomes of the pandemic. Even if 10 million

people could be randomly tested every day, the pandemic would lead to a severe contraction and would kill 0.28%

of the entire population –more than twice as many deaths as under the comprehensive contact-tracing technology.

What explains the spectacular failure of random testing? To answer this question, one should look at the

two bottom graphs of Figure 4.2, which show the share of newly infected asymptomatic subjects (left plot)

and the share of untested asymptomatic subjects (right plot) who are detected and quarantined in every period

under random testing and under the two tracing technologies. Even though many more tests are performed,

random testing can detect only half of the newly infected subjects in every period. Random testing is quite

effective in capturing untested asymptomatic subjects. Even so, random testing fails to reduce the effective

reproduction number, underscoring the importance of detecting and quarantine the newly infected cases to

attain a successful containment of the virus. This last intuition is reinforced by observing that even though the

basic contact-tracing technology largely fails to detect untested asymptomatic subjects, it fares relatively well in

containing the economic costs and the mortality of the pandemic.

That the probability of catching the newly infected asymptomatic subjects turns out to be key to controlling

the pandemic should not come as a surprise. We already noted that the reproduction number defined in equation

(4.38) is more sensitive to changes in the probability for newly infected agents to test positive, πTP,t, than to

changes in the probability for untested asymptomatic subjects to test positive, πAP,t.

29The probabilities of these random meetings in period t = 20 and in period t = 40, when the pandemic picks
up a little, are shown in the left plot of Figure 11 of Appendix D.8.
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4.5.2 Contact Tracing with Limited Tests

In the previous section, we showed that the basic tracing technology does a great job in controlling the spread

of the virus. The comprehensive tracing technology improves outcomes only marginally. However, the basic

tracing technology calls for a rapid increase in the testing scale after the thirtieth week of the pandemic. This

increase in the number of tests administered is needed to compensate for the poor performance of this technology

in catching the untested asymptomatic subjects, as reflected in the low value of πAP,t in the lower right plot of

Figure 4.2. As we will see, if health authorities cannot scale up their testing ability sufficiently quickly, the basic

tracing technology fails to contain the pandemic.

In this section, we show that this is the case when the testing capacity, Υt, is calibrated to the amount of tests

performed in the U.S. from March 16, 2020, through October 4, 2020. The U.S. health authorities had a daily

capacity of only 30,000 tests available at the onset of the pandemic crisis. This capacity then increased linearly

up to 1 million tests 28 weeks later.30 Afterwards, testing capacity is assumed to increase at a steady pace until

week 52, after which it stays put.

Looking at the third left plot in Figure 4.3, the basic contact-tracing technology (blue solid line) requires

testing to accelerate after period 30 to compensate for its inability to catch untested asymptomatic subjects.

However, testing capacity is not growing fast enough and the blue solid line hits the yellow starred line, denoting

the U.S. testing scale (Υt). As testing capacity becomes binding, the testing system collapses, as captured by the

rapid drop in the probability of catching a newly infected subject (πTP,t). As a result, the effective reproduction

number increases as agents cut their consumption and labor in response to the higher risk of getting infected.

This collapse of the testing system can be averted by introducing a mild lockdown 1 week before the testing

capacity would become binding. See the green dashed-dotted line in Figure 4.3. By lowering the amount of

economic interactions, the lockdown reduces the number of tests required, preventing the testing capacity Υt (the

yellow starred line) from ever becoming binding. The lockdown greatly mitigates the pandemic recession and

reduces the number of final deaths to half. The reason behind this result is that the lockdown solves a coordination

failure as agents fail to internalize the effects of their consumption and labor decisions on the viability of the

testing system, as explained in Section 4.3. By preserving the viability of the testing system, the lockdown

prevents the effective reproduction number from soaring and, in doing so, improves the outcomes of the pandemic

crisis.

The comprehensive tracing technology (the red dashed line in Figure 4.3) delivers the best outcome among

the considered alternative strategies. This better tracing technology allows health authorities to detect and isolate

roughly 20% of untested asymptomatic agents in every period via backward tracing (see the bottom right graph).

In doing so, this technology allows to keep the path of exposed subjects lower, reducing the number of tests

required. Consequently, the number of tests performed does not accelerate after period 30 as in the case of the

basic tracing technology. As a result, under the comprehensive tracing technology, the number of required tests

30The US conducted between 16 and 22 of March 231,081 tests, which is approximately 33,000 daily tests.
Between 28 September and 4 October, the U.S. conducted 6,936,961 tests, which corresponds approximately to
991,000 daily tests.
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Figure 4.3 Comparison of different testing strategies with limited tests: Comprehensive tracing (blue solid line) is previous
and current week tracing, basic tracing (red dashed line) is current week tracing and in the green dash-dotted basic tracing is
combined with a 1 year lockdown. In the fifth plot, the yellow starred line shows the testing capacity Υt.

does not become constrained by the limited testing capacity Υt so early and the testing system remains viable

even though no lockdown is imposed.

Nevertheless, the testing availability becomes binding later on, lowering the probability of testing asymp-

tomatic subjects, πAt , somewhat in subsequent periods. Because of the Pecking order, there is no effect on
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Figure 4.4 Comparison of different testing strategies under varying lockdown stringency imposed for the first 26 weeks.
Welfare in week 1, accumulated deaths, aggregate consumption and aggregate labor averaged over the 250 week horizon are
reported.

the probability of detecting newly infected agents, πTt , which, as we have already pointed out, is essential for

successful management of the pandemic. Thus, the effective reproduction number hardly budges and the effects

on consumption and mortality are only moderate.

4.5.3 The Optimal Stringency of the Lockdown

We now turn our attention to the optimal stringency of the lockdown. The stringency is captured by the size of the

consumption tax µL. The duration of the lockdown is kept fixed at 26 periods, Tµ = 26.31

Figure 4.4 shows the impact of different stringency levels of the lockdown under the two contact tracing

technologies assuming unlimited and limited testing capacities. We show the welfare in the first week, the

cumulative deaths, consumption, and labor.

When no lockdown is imposed (µL = 0), the basic tracing technology alone cannot prevent the collapse of

the testing system. As a result, consumption and labor are lower and total deaths are higher than those under

the case of unlimited testing (the green dashed-dotted line) where, by construction, the testing system cannot

collapse. Indeed, when the lockdown stringency is set to zero (µL = 0), the vertical distance between the blue

solid line and the green dashed-dotted line captures the effects of the collapse of the testing system on welfare,

31Our conclusions do not depend on the assumption of keeping the lockdown period fixed, as shown in Figure
D.5 of Appendix D.8 where we consider a longer lockdown duration Tµ = 52.
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total deaths, aggregate consumption, and labor. As the stringency of the lockdown is increased, welfare increases

as fewer people will be killed by the pandemic. However, consumption and labor fall steadily.

As the stringency of the lockdown reaches the threshold µL = 0.18, social welfare jumps to a higher level as

the death toll of the pandemic drops sharply and consumption and labor rise by a discrete amount. This discrete

increase in welfare is due to the preservation of the testing system achieved by the optimal lockdown policy.

This optimal lockdown allows the government to replicate the outcomes of the unlimited testing capacity (the

green dashed-dotted line). This happens because the optimal lockdown reduces agents’ individual consumption

and labor so as to solve the coordination failure threatening the viability of the testing system. By preserving the

correct functioning of the testing system, agents can consume and work more later when more tests are available

and the infection rate does not increase. This result is reflected in the discrete increase in consumption and

employment as the stringency of the lockdown is raised to its optimal level.

Under the comprehensive tracing technology, the viability of the testing system is not threatened by the

pandemic (the red dashed line). As a result, raising the stringency of the lockdown (µL) monotonically lowers

consumption and employment. However, social welfare improves as the lockdown reduces the amount of

economic interactions, leading to fewer infected cases and hence to a lower death toll.

Remarkably, lockdowns have virtually no effect on welfare when the tracing technology is comprehensive

because this more efficient tracing technology effectively shores up the testing system against the coordination

failure, as shown in Figure 4.3. However, a tiny lockdown is optimal as it corrects the small drop in the probability

of catching asymptomatic subjects (πAP,t), shown in Figure 4.3. Even though this drop is small and, as we noticed,

does not bring about any serious consequences for the economy and mortality, welfare is negatively affected by

that. In the case of comprehensive tracing and unlimited testing, no lockdown is the optimal choice.

4.6 Extensions

Our objective was to construct a macro-epidemiological model to serve as a general framework to study the

efficacy (or lack thereof) of contact tracing and testing. With this goal in mind, we tried to keep the model as

clean as possible. That said, our model can be extended in a number of interesting directions. We consider three

extensions that can be studied by tweaking our methodology.

Superspreaders. An interesting extension is to consider the case of superspreaders – a small number of carriers

ending up infecting many individuals. Superspreading may be linked to subjects who particularly enjoy social

activities or have jobs that expose them to a large number of people every day. It may also be linked to large

gatherings. Since superspreaders seem to have played a key role in spreading the coronavirus, we could introduce

a new type of agents, who either enjoy consumption more or draw less disutility from working than the other set

of agents. The presence of superspreader agents would make contact tracing even more effective than random

testing. As one of these superspreaders starts showing symptoms, policymakers can detect an outsized number of

newly infected agents from tracing the contacts of the superspreader. This is because superspreaders’ infection

130



chain is larger than that of normal spreaders.32 Our methodology is general and can be applied to models featuring

households or firms heterogeneity.

All Exposed Contacts Quarantined. We assumed that health authorities can only impose a quarantine on

people who get traced and tested positive or start developing some symptoms. We could have assumed instead

that all the exposed subjects are quarantined even if the testing capacity is binding and some of them cannot

be tested. This extension would have made our model less clean by adding a new additional type on top of the

currently featured six types. At the same time, it should be noted that this extension would not have added much

to our analysis, whose objective is to study a new externality that can explain why contact tracing can fail. For

our argument to hold, there just needs to be a constraint on how many people can be traced and isolated in every

period. In the real world, there are a large variety of such constraints. An example is the health authorities’

capacity to process all contacts traced by the tracing technology. If the “logarithmic increase” of infections is

not prevented, these processing constraints will soon become binding. In the presence of this type of constraints,

the key externalities studied in this paper will emerge, causing the tracing system to fail. We decided to use the

testing capacity as the key constraint in our model because it is relatively easy to calibrate.

Multiple Rounds of Tracing and Testing. We assumed that health officials cannot perform multiple rounds

of testing (i.e., testing the contacts of those who tested positive in the previous round). While our methodology

can be extended to model multiple rounds of contact tracing and testing, considering this extension in the paper

would not change our main conclusions. With the basic tracing technology, multiple rounds of testing can

provides only a minimal contribution because policymakers can mostly catch newly infected subjects who did not

have time to infect anyone else. With the comprehensive tracing technology, policymakers can catch untested

asymptomatic agents who had time to infect someone else in the previous period. However, as shown in Section

4.4, implementing this technology already attains a close-to-optimal control of the virus. Hence, any gain from

performing additional rounds of tracing and testing can only be incremental.

4.7 Concluding Remarks

We study contact tracing in a macro-epidemiological model in which some of the infected agents remain

asymptomatic for a number of periods during which they contribute to spreading the virus. In the model, agents’

consumption and labor decisions have externalities on number of subjects that will need to be traced and tested.

These externalities can threaten the viability of the testing system. A timely, appropriately sized lockdown can

correct the implications of these externalities for the economic and death toll of the pandemic.

32If policymakers can observe if an agent is a superspreader, they should first try to trace and test the
superspreaders. This strategy would obviously make contact tracing even more effective.
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Appendix A

Appendix to Chapter 1

A.1 Data

A.1.1 Leverage of Shadow Banks

The leverage series in this paper uses book equity, which is the difference between the value of portfolio claims and

liabilities of financial intermediaries. An alternative measure is the financial intermediaries’ market capitalization

(e.g. market valuation of financial intermediaries). The appropriate concept in this context is book equity because

the interest is on credit supply and financial intermediaries’ lending decision as stressed for instance in Adrian

and Shin (2014).1 In contrast to this, market capitalization is the appropriate measure related to the issuance of

new shares or acquisition decisions (Adrian et al., 2013). In the context of the model, the occurrence of a bank

run also depends on book equity, which rationalizes this choice. On that account, book leverage based on book

equity is the appropriate concept in our context.

A related issue is that marked-to-market value of book equity, which is the difference between the market

value of portfolio claims and liabilities of financial intermediaries, is conceptually very different from market

capitalization. As argued in Adrian and Shin (2014), the book value of equity should be measured as marked-

to-market. In such a case, the valuation of the assets is based on market values. Importantly, the valuation of

assets is marked-to-market in the balance sheet of financial intermediaries that hold primarily securities (Adrian

and Shin, 2014). Crucially, the concept of marked-to-market value of book equity corresponds to the approach

of leverage in the model as the value of the securities depends on their market price. Therefore, the interest is

marked-to-market book leverage.

A.1.2 Compustat

The book leverage of the shadow banking sector is constructed using balance sheet data from Compustat. I include

financial firms that are classified with SIC codes between 6141 - 6172 and 6199 - 6221. This characterization

1He et al. (2010) and He et al. (2017) provide an opposing view with an emphasis on market leverage.
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contains credit institutions, business credit institutions, finance lessors, finance services, mortgage bankers and

brokers, security brokers, dealers and flotation companies, and commodity contracts brokers and dealers.2 In

total, the unbalanced panel consists out of 562 firms.3

Equity is computed as the difference between book assets and book liabilities for each firm is:

Equityi,t = Book Assetsi,t − Book Liabilitiesi,t. (A.1)

The leverage of the shadow banking sector is then defined as

Leveraget =
∑
i Book Assetsi,t∑
i Book Equityi,t

, (A.2)

where I sum up equity and assets over the different entities.

A.1.3 Flow of Funds

An alternative to this leverage measure is to use data from the Flow of Funds as in Nuno and Thomas (2017). I

calculate the leverage using assets and equity for finance companies as well as security brokers and dealers:4

Leveraget = Assets Finance Companiest + Assets Security Brokers and Dealerst
Equity Finance Companiest + Equity Security Brokers and Dealerst

. (A.3)

A more narrow measure would rely only on the security broker and dealers as in Adrian and Shin (2010)

because these are the marginal investors. While there is a shift in the level, the implications are very similar to the

other two measures.

A.2 Model Equations and Equilibrium

The equilibrium conditions for the normal equilibrium are shown, and afterwards the bank run equilibrium is

discussed.

A.2.1 Normal Equilibrium

Households

Ct = WtLt +Dt−1Rt −Dt + Ξt +QtS
H
t + (Zt + (1 − δ)Qt)SHt−1, (A.4)

ϱt = (Ct)−σ, (A.5)

ϱtWt = χLφt , (A.6)

2Finance lessors and finance services with the SIC codes 6172 and 6199 are not official SIC codes, but are
used by the U.S. Securities and Exchange commission.

3As a robustness check, I keep only firms that have balance sheet data for at least two consecutive years.
While the number of firms reduces to 462, the leverage series and its moments are robust to this change.

4I adjust for discontinuities and breaks in the data.
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1 = βEtΛt,t+1Rt+1, (A.7)

1 = βEtΛt,t+1
Zt+1 + (1 − δ)Qt+1

Qt + Θ(SHt /St − γF )/ϱt
, (A.8)

βEtΛt,t+1 = βEtϱt+1/ϱt. (A.9)

Banks

QtS
B
t = ϕtNt, (A.10)

ωt = ϕt−1 − 1
RKt ϕt−1

, (A.11)

(1 − pt)ENt [βΛt,t+1R̄tDt] + ptE
R
t [βΛt,t+1R

K
t+1QtS

B
t ] ≥ Dt, (A.12)

(1 − pt)ENt [Λt,t+1R
K
t+1(θλt+1 + (1 − θ))[1 − e

−ψ
2 − π̃t+1]] = ptE

R
t [Λt,t+1R

K
t+1(e−ψ

2 − ωt+1 + π̃t+1)],

(A.13)

λt =
(1 − pt)ENt Λt,t+1R

K
t+1[θλt+1 + (1 − θ)](1 − ωt+1)

1 − (1 − pt)ENt [Λt,t+1RKt+1ωt+1] − ptERt [Λt,t+1RKt+1]
, (A.14)

κt = β(1 − pt)ENt Λt,t+1 [λt − (θλt+1 + 1 − θ)]
(1 − pt)ENt Λt,t+1

[
(θλt+1 + 1 − θ) F̃t+1(ωt+1)

]
+ ptERt Λt,t+1

[
(θλt+1 + 1 − θ)

(
1 − F̃t+1(ωt+1)

)] ,
(A.15)

Et[π̃t+1] = Et

[
ωt+1Φ

( log(ωt+1) + 1
2 (ψ + σ2

t+1)
σt+1

)
− e−ψ/2Φ

( log(ωt+1) + 1
2 (ψ − σ2

t+1)
σt+1

)]
,

(A.16)

NS,t = RKt Qt−1S
B
t−1 −Rt−1Dt−1, (A.17)

NN,t = (1 − θ)ζSt−1, (A.18)

Nt = θNS,t +NN,t. (A.19)

Non-Financial Firms

Yt = At(Kt−1)α(Lt)1−α, (A.20)

Kt = St, (A.21)

MCt(1 − α)Yt
Lt

= Wt, (A.22)

RKt = Zt +Qt(1 − δ)
Qt−1

, (A.23)

Zt = MCtα
Yt
Kt−1

, (A.24)

(Πt − ΠSS)Πt = ϵ

ρr

(
MCt − ϵ− 1

ϵ

)
+ Λt,t+1, (Πt+1 − ΠSS)Πt+1

Yt+1

Yt
, (A.25)

Γ
( It
Kt

)
= a1

( It
Kt

)(1−η)
+ a2, (A.26)

Qt =
[

Γ′
( It
St−1

)]−1

, (A.27)
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St = (1 − δ)St−1 + Γ
( It
St−1

)
St−1. (A.28)

Monetary Policy and Market Clearing

it = 1
β

ΠκΠ
t (Yt/YSS)κy , (A.29)

βΛt,t+1
it

Πt+1
= 1, (A.30)

Yt = Ct + It +G+ ρr

2 (Πt − 1)2Yt, (A.31)

St = SHt + SBt . (A.32)

Shocks

σt = (1 − ρσ)σ + ρσσt−1 + σσϵσt , (A.33)

At = (1 − ρA)A+ ρAAt−1 + σAϵAt , (A.34)

ιt =

1 with probabilityΥ

0 with probability1 − Υ
. (A.35)

Bank Run Specific Variables

pt = prob(xt+1 < 1)Υ, (A.36)

Rt =

R̄t−1 if no bank run takes place in period t

xtR̄t−1 if a bank run takes place in period t
, (A.37)

xt =
[(1 − δ)Q⋆t + Z⋆t ]SBt−1

R̄t−1Dt−1
, (A.38)

(A.39)

where ⋆ indicates the variables conditional on the run equilibrium

A.2.2 Bank Run Equilibrium

The bank run equilibrium has almost the same equations as the normal equilibrium, which are not repeated for

convenience. In the bank run equilibrium, all banks from the previous period are bankrupt due to xt < 1. Thus,

the net worth of surviving banks is zero:

NS,t = 0. (A.40)
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Furthermore, the return on deposits is lower than the promised one and is given as:

Rt = xtR̄t−1 (A.41)

As the banking sector starts to rebuild in the same period, the other banking equations are unchanged.

A.3 Derivation of Banker’s Problem

In the following, I derive the banker’s problem for two cases: (i) absence of bank runs and (ii) anticipation of

bank runs.

A.3.1 Absence of bank runs

The banker maximises the value of its bank Vt subject to a participation and incentive constraint, which reads as

follows:5

V jt (N j
t ) = max

SBjt ,D̄t

βEtΛt,t+1

[
θV jt+1(N j

t+1) + (1 − θ)(RKt+1QtS
Bj
t − D̄j

t )
]
, (A.42)

subject to βEt[Λt,t+1R̄
D
t D

j
t ] ≥ Dj

t , (A.43)

βEtΛt,t+1

{
θV jt+1(SBjt , D

j

t ) + (1 − θ)[RKt+1QtS
Bj
t −D

j

t ]
}

≥ (A.44)

βEtΛt,t+1

∫ ∞

ωjt+1

{
θVt+1(ω, SBjt , D

j

t ) + (1 − θ)[RKt+1QtS
Bj
t ωjt+1 −D

j

t ]
}
dF̃t+1(ω).

The banker’s problem can be written as the following Bellman equation:

Vt(N j
t ) = max

{SBjt ,b
j

t}
βEtΛt,t+1

[
θVt+1

((
1 − b

j

t

RKt+1

)
RKt+1QtS

Bj
t

)
+ (1 − θ)

(
1 − b

j

t

RKt+1

)
RKt+1QtS

Bj
t

]
+ λjt

[
βEtΛt,t+1QtS

Bj
t b

j

t − (QtSBjt −N j
t )
]

+ κjtβEtΛt,t+1

{[
θVt+1

((
1 − b

j

t

RKt+1

)
RKt+1QtS

Bj
t

)
+ (1 − θ)

(
1 − b

j

t

RKt+1

)
RKt+1QtS

Bj
t

]
−
∫ ∞

b
j
t

RK
t+1

[
θVt+1

((
ω − b

j

t

RKt+1

)
RKt+1QtS

Bj
t

)
+ (1 − θ)

(
ω − b

j

t

RKt+1

)
RKt+1QtS

Bj
t

]
dF̃t+1(ω)

}

where I defined b
j

t = D
j

t/
(
QtS

B
t

)
and used that

N j
t =


(

1 − b
j

t−1
RKt

)
RKt Qt−1S

Bj
t−1 if standard security(

ω − b
j

t−1
RKt

)
RKt Qt−1S

Bj
t−1 if substandard security

(A.45)

5The derivation is based on Nuño and Thomas (2017).
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λjt and κjt are the Lagrange multiplier of the participation and incentive constraint. The first order conditions are

0 =βEtΛt,t+1R
K
t+1[θV ′,j

t+1 + (1 − θ)](1 − ωjt+1) + λjtEt[βΛt,t+1R
K
t+1ω

j
t+1 − 1]

+ κjtβEtΛt,t+1R
K
t+1

{
[θV ′,j

t+1 + (1 − θ)](1 − ωjt+1) −
∫ ∞

ωjt+1

[
[θV ′,j

t+1 + (1 − θ)](ω − ωjt+1)
]
dF̃t+1(ω)

}

and

0 = − βEtΛt,t+1[θV ′j
t+1 + (1 − θ)] + λjtβEtΛt,t+1

− κjtβEtΛt,t+1

{
[θV ′j

t+1 + (1 − θ)] −
∫ ∞

ωjt+1

[
θV ′j

t+1 + (1 − θ)
]
dF̃t+1(ω) − θ

Vt+1(0)
RKt+1QtS

Bj
t

f̃t(ωjt+1)
}

where I used ωjt+1 = b
j

t/R
K
t+1. The envelope condition is given as:

V ′j
t = λjt (A.46)

The first order conditions can be written as:

0 =βEtΛt,t+1R
K
t+1[θλjt+1 + (1 − θ)](1 − ωjt+1) + λjtEt[Λt,t+1R

K
t+1ω

j
t+1 − 1]

+ κjtEtR
K
t+1[θλjt+1 + (1 − θ)]

{
(1 − ωjt+1) −

∫ ∞

ωjt+1

[
(ω − ωjt+1)

]
dF̃t+1(ω)

}
0 = − βEtΛt,t+1[θλjt+1 + (1 − θ)] + λjtβEtΛt,t+1

− κjtβEtΛt,t+1

{
[θλjt+1 + (1 − θ)] −

∫ ∞

ωjt+1

[
θλjt+1 + (1 − θ)

]
dF̃t+1(ω) − θ

Vt+1(0)
Rt+1KQtSBjt

f̃t(ωjt+1)
}

To continue solving the problem, I use a guess and verify approach. I guess that the value function is linear in net

worth, so that the value function reads as follows:

Vt = λjtN
j
t (A.47)

Furthermore, I guess the multipliers are equal across banks, that is λjt = λt and κjt = κt ∀j. Using the guess, the

incentive constraint can be written as:

βEtΛt,t+1


[
θλt+1(1 − ωjt+1)RKt+1QtS

B
t + (1 − θ)(1 − ωjt+1)RKt+1QtS

B
t

]
−∫∞

ωjt+1

[
θλt+1(ωt − ωjt+1)RKt+1QtS

B
t + (1 − θ)(ωt − ωjt+1)RKt+1QtS

B
t

]
dF̃t+1(ω)

 ≥ 0

and reformulated to:

βEtΛt,t+1(θλt+1 + (1 − θ))
{

(1 − ωjt+1) −
∫ ∞

ωjt+1

(ωt − ωjt+1)dF̃t+1(ω)
}

≥ 0 (A.48)

The next step is to simplify the first order conditions. I use that if either the incentive constraint binds or if not

then λt = 0 (Kuhn Tucker conditions) to simplify the participation constraint and use that the guess for the value
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function evaluated at 0 so that the first order conditions are given as:

0 =EtΛt,t+1R
K
t+1[θλt+1 + (1 − θ)](1 − ωt+1) + λtEt[Λt,t+1R

K
t+1ω

j
t+1 − 1] (A.49)

0 = − βEtΛt,t+1[θλt+1 + (1 − θ)] + λtβEtΛt,t+1 − κtβEtΛt,t+1(θλt+1 + (1 − θ))F̃t+1(ωjt+1)

(A.50)

I can now get the following expression for the multipliers:

λt =
βEtΛt,t+1R

K
t+1[θλt+1 + (1 − θ)](1 − ωjt+1)

1 − βEtΛt,t+1RKt+1ω
j
t+1

(A.51)

κt = βEtΛt,t+1(λt − [θλt+1 + (1 − θ)])
βEtΛt,t+1(θλt+1 + (1 − θ))F̃t+1(ωjt+1)

(A.52)

I now want to show that the multipliers are symmetric across banks. Assuming that equation (A.48), which is the

incentive constraint, is binding, I can get ωjt = ωt. Due to bjt = ωjt+1R
K
t , bjt = bt can be obtained. At the same

time, we have ωjt+1 = ωt+1 and b
j

t = bt. Then, equation (A.51) implies that λjt = λt and equation (A.52) shows

κjt = κt. This verifies our guess that the multipliers are equalized. I check numerically that the participation and

incentive constraint are binding, that is λt > 0 and κt = 0.

To show that the leverage ratio is symmetric, I use the participation constraint and assume that it is binding:

EtΛt,t+1QtS
Bj
t b

j

t − (QtSBjt −N j
t ) = 0. (A.53)

The leverage ratio is then given as:

ϕjt = 1
1 − EtΛt,t+1RKt+1ωt+1

. (A.54)

As the leverage ratio does not depend on j, this implies that ϕt = ϕjt .

The final step is to show that our guess Vt = λtN
j
t is correct. The starting point is again the value function:

Vt(N j
t ) = βEt

[
(θλt+1Nt+1 + (1 − θ)

(
1 − ωt+1

)
RKt+1QtS

Bj
t )
]
,

where I used N j
t+1 = (1 − ωt+1)RKt+1QtS

Bj
t . I insert the guess to obtain:

λtN
j
t = ϕtN

j
t βEtΛt,t+1

[
θλt+1 + (1 − θ)

](
1 − ωt+1

)
RKt+1. (A.55)

and reformulate it to

λt = ϕtEtΛt,t+1
[
θλt+1 + (1 − θ)

](
1 − ωt+1

)
RKt+1 (A.56)
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This gives us again a condition for λt:

λt = Et
[
(θλt+1Nt+1 + (1 − θ)

(
1 − ωt+1

)
RKt+1QtS

Bj
t )
]

(A.57)

= ϕtβEtΛt,t+1
[
θλt+1 + (1 − θ)

](
1 − ωt+1

)
RKt+1. (A.58)

Inserting (A.54), the condition for λt becomes:

λt =
βEtΛt,t+1

[
θλt+1 + (1 − θ)

](
1 − ωt+1

)
RKt+1

1 − βEtΛt,t+1RKt+1ωt+1
. (A.59)

This coincides with the equation (A.51). This verifies the guess.

A.3.2 With Bank Runs

In this section, the possibility of bank runs is included. The banker maximises Vt subject to a participation and

incentive constraint, which reads as follows:

V jt (N j
t ) = max

SBjt ,D̄t

(1 − pjt )βENt Λt,t+1

[
θV jt+1

(
N j
t+1

)
+ (1 − θ)(RKt+1QtS

Bj
t − D̄j

t )
]

(A.60)

s.t. (1 − pjt )βENt [Λt,t+1QtS
Bj
t b

j

t ] + pjtβE
R
t [RKt+1QtS

Bj
t ] ≥ (QtSBjt −N j

t ) (A.61)

(1 − pjt )ENt

[
Λt,t+1θVt+1

(
N j
t+1

)
+ (1 − θ)

(
1 − b

j

t

RKt+1

)
RKt+1QtS

Bj
t

]
≥ (A.62)

βΛt,t+1Et

Λt,t+1

∫ ∞

b
j
t

RK
t+1

θVt+1

(
N j
t+1

)
+ (1 − θ)

(
ω − b

j

t

RKt+1

)
RKt+1QtS

Bj
t dF̃t+1(ω)


The banker’s specific can be written as Bellman equation:

Vt(N j
t ) = max

{ϕjt ,b
j

t}
(1 − pjt )βENt Λt,t+1

[
θVt+1

((
1 − b

j

t

RKt+1

)
RKt+1ϕ

j
tN

j
t

)
+ (1 − θ)

(
1 − b

j

t

RKt+1

)
RKt+1ϕ

j
tN

j
t

]
+ λjt

[
(1 − pjt )βENt [Λt,t+1ϕ

j
tN

j
t b
j

t ] + pjtβE
R
t [RKt+1ϕ

j
tN

j
t ] − (ϕjtN

j
t −N j

t )
]

+ κjtβ

{[
(1 − pjt )ENt Λt,t+1

[
Λt,t+1θVt+1

((
1 − b

j

t

RKt+1

)
RKt+1ϕ

j
tN

j
t

)
+ (1 − θ)

(
1 − b

j

t

RKt+1

)
RKt+1ϕ

j
tN

j
t

] ]

− βEt

[
Λt,t+1

∫ ∞

b
j
t

RK
t+1

θVt+1

((
1 − b

j

t

RKt+1

)
RKt+1ϕ

j
tN

j
t

)
+ (1 − θ)

(
ω − b

j

t

RKt+1

)
RKt+1ϕ

j
tN

j
t dF̃t+1(ω)

]}

The first order conditions with respect to ϕjt can be written as

0 =(1 − pjt )ENt Λt,t+1R
K
t+1[θV ′j

t+1 + (1 − θ)](1 − ωjt+1)

+ λjt ((1 − pjt )ENt [Λt,t+1R
K
t+1ω

j
t+1] + ptE

R
t [Λt,t+1R

K
t+1] − 1)

+ κjt ((1 − pjt )βENt Λt,t+1R
K
t+1[θV ′j

t+1 + (1 − θ)](1 − ωjt+1)
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− κjtβEtΛt,t+1

∫ ∞

ωjt+1

[
RKt+1[θV ′j

t+1 + (1 − θ)](ω − ωjt+1)
]
dF̃t+1(ω)

− ∂pjt

ϕjt
ENt Λt,t+1R

K
t+1[θV ′j

t+1 + (1 − θ)](1 − ωjt+1)
(

1 + κjt

)
(A.63)

− ∂pjt

ϕjt
ENt

(
RKt+1ω

j
t+1 −RKt+1

)
(A.64)

where I applied ωjt+1 = b
j

t/R
K
t+1. Gertler et al. (2020) show that the even though the optimization of leverage

ϕj affect the default probability pt, this indirect effect on on the firm value Vt and the promised return RDt is

zero. The reason is that at the cutoff value of default, net worth is zero, which implies Vt+1 = 0. Similarly, the

promised return is unchanged. The cutoff values of default is defined as:

ξDt+1(ϕjt ) =
{

(σt+1, At+1, ιt+1) : RKt+1
ϕjt − 1
ϕjt

R
D

t

}
. (A.65)

At the cutoff points, the banker can exactly cover the face value of the deposits, which implies

ωjt = 1. (A.66)

Based on the derivation in Gertler et al. (2020), the property ωjt = 1 implies that

− ∂pt

SBjt
ENt Λt,t+1R

K
t+1[θV ′j

t+1 + (1 − θ)](1 − ωjt+1)
(

1 + κjt

)
= 0, (A.67)

− ∂pt

SBjt
ENt

(
RKt+1ω

j
t+1 −RKt+1

)
= 0, (A.68)

The first order condition with respect to ϕBt becomes then

0 =(1 − pjt )ENt Λt,t+1R
K
t+1[θV ′j

t+1 + (1 − θ)](1 − ωjt+1)

+ λjt ((1 − pjt )ENt [Λt,t+1R
K
t+1ω

j
t+1] + ptE

R
t [Λt,t+1R

K
t+1] − 1)

+ κjt ((1 − pjt )βENt Λt,t+1R
K
t+1[θV ′j

t+1 + (1 − θ)](1 − ωjt+1)

− κjtβEtΛt,t+1

∫ ∞

ωjt+1

[
RKt+1[θV ′j

t+1 + (1 − θ)](ω − ωjt+1)
]
dF̃t+1(ω)

The first order condition with respect to b
j

t is given as

0 = − β(1 − pjt )ENt Λt,t+1[θV ′j
t+1 + (1 − θ)]

+ λjtβ(1 − pjt )ENt Λt,t+1 (A.69)

− κjtβ(1 − pjt )ENt Λt,t+1

{
[θV ′j

t+1 + (1 − θ)]
}

+ κjtβ(1 − pjt )EtΛt,t+1

∫ ∞

ωjt+1

[
θV ′j

t+1 + (1 − θ)
]
dF̃t+1(ω) − θ

Vt+1(0)
RKt+1QtS

Bj
t

f̃t(ωjt+1)
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where I applied ωjt+1 = b
j

t/R
K
t+1

Similar to before, I use the following guess for the value function

Vt = λjtN
j
t (A.70)

and also that the multipliers are equal across banks, that is λjt = λt and κjt = κt∀j. In addition, I also guess now

that the probability of a bank run does not depend on individual characteristics, that is pjt = pt.

The incentive constraint can then then be written as

β(1 − pjt )ENt
[
Λt,t+1(θλt+1 + (1 − θ))(1 − ωjt+1)RKt+1

]
≥ (A.71)

βEt

Λt,t+1

∫ ∞

b
j
t

RK
t+1

(θλt+1 + (1 − θ))
(
ω − ωjt+1

)
RKt+1dF̃t+1(ω)


The two first order conditions can then be adjusted similar to section A.3.1 and be written as

0 =(1 − pt)ENt Λt,t+1R
K
t+1[θλt+1 + (1 − θ)](1 − ωjt+1)+

λt((1 − pt)ENt [Λt,t+1R
K
t+1ωt+1] + ptE

R
t [Λt,t+1R

K
t+1] − 1) (A.72)

0 = − β(1 − pt)ENt Λt,t+1[θλt+1 + (1 − θ)] + λtβ(1 − pt)ENt Λt,t+1

− κtβ
{

(1 − pt)ENt Λt,t+1

[
(θλt+1 + 1 − θ) F̃t+1(ωjt+1)

]
+ ptE

R
t Λt,t+1

[
(θλt+1 + 1 − θ)

(
1 − F̃t+1(ωjt+1)

)]}
(A.73)

Using the same strategy as in A.3.1, the guess about the equalized multipliers can be verified. Similarly, it can

be shown that leverage is the same across banks. This then verifies that the guess of the bank run probability

pjt = pt is verified as the cutoff value is the same across banks as shown in equation (A.65). I additionally assume

that in case of a run on the entire banking sector, a bank that survives shuts down and returns their net worth. This

implies that ERt λt+1 = 1. The participation constraint is given as:

(1 − pt)ENt [βΛt,t+1R̄tDt] + ptE
R
t [βΛt,t+1R

K
t+1QtS

B
t ] = Dt. (A.74)

The incentive constraint is given as:

(1 − pt)ENt [Λt,t+1R
K
t+1(θλt+1 + (1 − θ))[1 − e

−ψ
2 − π̃t+1]] = (A.75)

ptE
R
t [Λt,t+1R

K
t+1(e−ψ

2 − ωt+1 + π̃t+1)],

λt and κt are derived from the first order conditions in equations (A.72) and (A.73) are given as:

λt =
(1 − pt)ENt Λt,t+1R

K
t+1[θλt+1 + (1 − θ)](1 − ωt+1)

1 − (1 − pt)ENt [Λt,t+1RKt+1ωt+1] − ptERt [Λt,t+1RKt+1]
(A.76)
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κt = β(1 − pt)ENt Λt,t+1 [λt − (θλt+1 + 1 − θ)]
(1 − pt)ENt Λt,t+1

[
(θλt+1 + 1 − θ) F̃t+1(ωt+1)

]
+ ptERt Λt,t+1

[
(θλt+1 + 1 − θ)

(
1 − F̃t+1(ωt+1)

)]
(A.77)

It is numerically checked that λt > 0 and κt > 0 so that the participation and incentive constraint are binding.

A.4 Global Solution Method

The Algorithm uses time iteration with piecewise linear policy functions based on Richter et al. (2014). The

approach is adjusted to take into account the multiplicity of equilibria due to possibility of a bank run also that

the probability of the bank run equilibrium is time-varying. The state variables are {St−1, Nt, σt, At, ιt}, where I

used Nt as state variable instead of Dt−1 for computational reasons. The policy variables are Qt, Ct, bt,Πt, λt. I

solve for the following policy functionsQ(X), C(X), b(X),Π(X), λ(X), the law of motion of net worth

N ′(X,εt+1) and the probability of a bank run next period P (X). The expectations are evaluated using

Gauss-Hermite quadrature, where the matrix of nodes is denoted as ε. The Algorithm is summarized below:

1. Define a state grid X ∈ [St−1, St−1] × [N t, N t] × [σt, σt] × [At, At] and integration nodes ϵ ∈

[ϵσt+1, ϵ
σ
t+1] × [ϵAt+1, ϵ

A
t+1] to evaluate expectations based on Gauss-Hermiture quadrature

2. Guess the piecewise linear policy functions to initialize the algorithm6

(a) the "classical" policy functionsQ(X), C(X), b(X),Π(X), λ(X)

(b) a functionN ′(X,εt+1) at each point from the nodes of next period shocks based on Gauss-Hermite

Quadrature

(c) the probability P (X) that a bank run occurs next period

3. Solve for all time t variables for a given state vector. Take from the previous iteration j the law of motion

N ′
j(X, εt+1) and the probability of a bank run as given Pj(X) and calculate time t+ 1 variables using

the guess j policy functions withX′ as state variables. The expectations are calculated using numerical

integration based on Gauss-Hermiture Quadrature. A numerical root finder with the time t policy functions

as input minimises the error in the following five equations:

err1 = (Πt − ΠSS)Πt (A.78)

−
(
ϵ

ρr

(
MCt − ϵ− 1

ϵ

)
+ Λt,t+1(Πt+1 − ΠSS)Πt+1

Yt+1

Yt

)
,

err2 = 1 − βΛt,t+1
it

Πt+1
1, (A.79)

err3 = (1 − pt)ENt
[
βΛt,t+1R̄tDt

]
+ ptE

R
t

[
βΛt,t+1R

K
t+1QtS

B
t

]
−Dt, (A.80)

err4 = (1 − pt)ENt
[
Λt,t+1R

K
t+1(θλt+1 + (1 − θ))(1 − e

−ψ
2 π̃t+1)

]
(A.81)

6In practice, it can be helpful to solve first for the economy with only one shock, for instance the volatility
shock, and solve this model in isolation. The resulting policy functions can then be used as starting point for the
full model with two shocks.
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− ptE
R
t

[
Λt,t+1R

K
t+1(e−ψ

2 − ωt+1 + π̃t+1)
]
,

err5 = λt −
(1 − pt)ENt Λt,t+1R

K
t+1[θλt+1 + (1 − θ)](1 − ωt+1)

1 − (1 − pt)ENt [Λt,t+1RKt+1ωt+1] − ptERt [Λt,t+1RKt+1]
. (A.82)

4. Take the iteration j policy functions ,N ′
j(X, εt+1) and Pj(X) as given and and solve the whole system

of time t and (t+ 1) variables. Calculate then Nt+1 using the "law of motion" for net worth

Nt+1 = max
[
RKt+1QtS

B
t −RtDt, 0

]
+ (1 − θ)ζSt (A.83)

A bank run occurs at a specific point if

RKt+1QtS
B
t −RtDt ≤ 0 (A.84)

In such a future state, the weight of a bank run is 1. In other state, the weight of a bank run.7 This can be

now used to evaluate the probability of a bank run next period based on Gauss-Hermiture quadrature so

that we know pt.

5. Update the policy policy functions slowly Q(X),C(X),ψ(X),π(X). For instance for consumption

policy function, this could be written as:

Cj+1(X) = αU1Cj(X) + (1 − αU1)Csol(X) (A.85)

where the subscript sol denotes the solution for this iteration and αU1 determines the weight of the previous

iteration. Furthermore,N ′(X, εt+1) and P (X) are updated using the results from step 4:

N ′
j+1(X, εt+1) = αU2N ′

j(X, εt+1) + (1 − αU2)N ′
sol(X, εt+1) (A.86)

Pj+1(X) = αU3Pj(X) + (1 − αU3)Psol(X) (A.87)

6. Repeat steps 3,4 and 5 until the errors of all functions, which are the classical policy functions

Q(X), C(X), b(X),Π(X), λ(X) together with the law of motion of net worth N ′(X,εt+1) and

the probability of a bank P (X), at each point of the discretized state are sufficiently small.

A.5 Particle Filter

I use particle filter with sequential importance resampling based on Atkinson et al. (2019) and Herbst and

Schorfheide (2015). The algorithm is adapted to incorporate sunspot shocks and endogenous equilibria similar to

7This procedure would imply a zero and one indicator, which is very unsmooth. For this reason, we use the

following functional forms based on exponential function: exp(ζ1(1−Dt+1))
1+exp(ζ1∗(1−Dt+1)) where Dt+1 = Rkt+1

RDt

ϕ
ϕ−1 at each

calculated Nt+1. ζ1 a large value of zeta ensures sufficient steepness so that the approximation is close to an
indicator function of 0 and 1.
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Borağan Aruoba et al. (2018), who have a model with sunspot shocks that directly determine the equilibria. I

extend this approach to include that the probability of equilibria is endogenously time-varying. The total number

of particles M is set to 10000 as in Borağan Aruoba et al. (2018).

1. Initialization Use the risky steady state of the model as starting point and draw {vt,m}0
t=−24 for all

particles m ∈ {0, ...,M}. I set {ιt,m = 0}0
t=−24, which excludes a bank run in the initialization. The

simulation of these shocks provides the start values for the state variables X0,m.

2. Recursion Filter the nonlinear model for periods t = 1, ..., T

(a) Draw the sunspot shock ιt,m and the structural shocks vt,m for each particle m = {1, ...,M}. The

sunspot shock is drawn from a binomial distribution with realizations 0, 1:

ιt,m ∼ B (1,Υ) (A.88)

where 1 indicates the number of trails and Υ is the probability of ι = 1.8 The structural shocks are

drawn from a proposal distribution that distinguishes between the realizations of the sunspot shock :

vt,m ∼ N(vtι=0, I) if ιt,m = 0 (A.89)

vt,m ∼ N(vtι=1, I) if ιt,m = 1 (A.90)

As the regime selection is endogenous in the model, the proposal distribution can be the same for the

two realizations of the sunspot shock. This is the case if the model does not suggest the realization of

a bank run. The difference in using the proposal distribution is that instead of drawing directly from a

distribution, I draw from an adapted distribution. I derive the proposal distribution by maximizing the

fit of the shock for the average state vector Xt−1 = 1
M

∑M
m=1 Xt−1,m

i. Calculate a state vector Xt from Xt−1 and a guess of vt for the possible realizations of the

sunspot shock:

Xι=0
t = f(Xt−1, v

ι=0
t , ιt = 0) (A.91)

Xι=1
t = f(Xt−1, v

ι=1
t , ιt = 1) (A.92)

ii. Calculate the measurement error from the observation equation for the two cases

uι=0
t = Yt − g(Xι=0

t ) (A.93)

uι=0
t = Yt − g(Xι=1

t ) (A.94)

8In practice, I draw from a uniform distribution bounded between 0 and 1 and categorize the sunspot
accordingly.
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The measurement error follows a multivariate normal distribution, so that the probabilities of

observing the measurement error for the different sunspot shocks are given by

p(uι=0
t |Xι=0

t ) = (2π)−n/2|Σu|−0.5 exp
(
−0.5(uι=0

t )′Σ−1
u (uι=0

t )
)

(A.95)

p(uι=1
t |Xι=1

t ) = (2π)−n/2|Σu|−0.5 exp
(
−0.5(uι=1

t )′Σ−1
u (uι=1

t )
)

(A.96)

where Σu is the variance of the measurement error and n is the number of observables, which is

2 in this setup.

iii. Calculate the probability of observing Xι=0
t respectively Xι=1

t conditional on the average state

vector from the previous period

p(Xι=0
t |Xt−1) = (2π)−n/2 exp

(
−0.5(vtι=0)′(vtι=0)

)
(A.97)

p(Xι=1
t |Xt−1) = (2π)−n/2 exp

(
−0.5(vtι=1)′(vtι=1)

)
(A.98)

iv. To find the proposal distribution, maximise the following objects with respect vtι=0 respectively

vt
ι=1 :

p(Xι=0
t |Xt−1)p(uι=0

t |Xι=0
t ) (A.99)

p(Xι=1
t |Xt−1)p(uι=1

t |Xι=1
t ) (A.100)

This provides the proposal distributions N(vtι=0, I) and N(vtι=1, I)

(b) Propagate the state variables Xt,m by iterating the state-transition equation forward given Xt−1,m,

vt,m and ιt,m:

Xt,m = f(Xt−1,m, vt,m, ιt) (A.101)

(c) Calculate the measurement error

utm = Yt − g(Xt,m) (A.102)

The incremental weights of the particle m can be written as

wt,m =p(ut,m|Xt,m)p(Xt,m|Xt−1,m)
f(Xt,m|Xt−1,m,Yt, ιt,m) (A.103)

=


(2π)−n/2|Σu|−0.5 exp(−0.5u′

t,mΣ−1
u ut,m) exp(−0.5v′

t,mvt,m)
exp(−0.5(vt,m−vι=0

t )′(vt,m−vι=0
t )) if ιt,m = 0

(2π)−n/2|Σu|−0.5 exp(−0.5u′
t,mΣ−1

u ut,m) exp(−0.5v′
t,mvt,m)

exp(−0.5(vt,m−vι=1
t )′(vt,m−vι=1

t )) if ιt,m = 1
(A.104)
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where the density f(·) depends on the realization of the sunspot shock. The incremental weights

determine the log-likelihood contribution in period t:

ln(lt) = ln
(

1
M

M∑
m=1

wt,m

)
(A.105)

(d) Resample the particles based on the weights of the particles. First, the normalized weights Wt,m are

given by:

Wt,m = wt,m∑M
m=1 wt,m

(A.106)

Second, the deterministic algorithm of Kitagawa (2016) resamples the particles by drawing from the

current set of particles adjusted for their relative weights. This gives a resampled distribution of state

variables Xt,m.

3. Likelihood Approximation Determine the approximated log-likelihood function of the model as

ln(Lt) =
T∑
t=1

ln(lt) (A.107)

The results are robust to using a particle filter without drawing from a proposal distribution. In this scenario, I

do not maximise the fit of structural shocks to find vtι=0, vt
ι=1. Instead, I draw directly draw from a standard

normal distribution, which implies vtι=0 = vt
ι=1 = 0. The rest of the algorithm remains the same.

A.6 Reduced-Form Evidence

This section discusses the derivation of the probability measure of a severe crisis. To begin with, the quantile

estimates need to mapped into a quantile distribution. Based on this distribution, the measure can then be derived.

A.6.1 Distribution of GDP Growth

So far, the different quantiles have been analysed. I am now interested in extending this approach to assess the

entire distribution and shed more light on the role of leverage. While the estimated quantiles Q̂τ (ȳt+4|xt) can be

mapped into the quantile function F−1
ȳt+4

(τ |xt), it is in practice difficult to obtain the quantile function as argued

in Adrian et al. (2019b). Following their approach, I fit THE estimated quantiles to a skewed-t-distribution of

Azzalini and Capitanio (2003), which then gives us with the following probability density function:

f(ȳt+h;xt, µt, σt, αt, νt) = 2
σt
t (z̄t+h; νt)T

(
αz̄t+h

√
νt + 1

νt + z̄2
t+h

; νt + 1
)

(A.108)
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where z̄t+h = (ȳt+h − µt)/σt. t(·) and T (·) are the probability density function and cumulative density function

of the student t-distribution. The four parameters determine the location (µt ∈ R), the scale (σt ∈ R+), skewness

(αt ∈ R) and kurtosis (νt ∈ Z) of the distribution.

Following Adrian et al. (2019b), I minimize the squared distance between the estimated quantile function

Q̂τ (ȳt+4|xt) and the quantile function of the skewed t-distribution F ȳ−1
t+4(τ ;xt, µt, σt, αt, νt) to match the

5%,25%, 75% and 95% quantiles:

{µ̂t, σ̂t, α̂t, ν̂t} = arg min
µt,σt,αt,νt

∑
τ

[
Q̂τ (ȳt+4|xt) − F−1

ȳt+4
(τ ;xt, µt, σt, αt, νt)

]2
(A.109)

where the four parameters are exactly identified. I can now compute the skewed t-distribution at each point in

time for our sample.
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Figure A.1 The predicted probability distribution function for 2008Q4 conditional on 2007Q4. The blue line shows the PDF
that is conditioned on the baseline scenario with current GDP growth and leverage. The red line displays the PDF that is
only conditioned on current GDP growth. The blue and red shaded area indicate the area below the 5% quantile for both
specifications.

Figure A.1 shows the forecasted probability density function of GDP growth in 2008:Q4, which is conditioned

on 2007:Q4. The fourth quarter of 2008 is a key date as this coincides with the run on the shadow banking sector

after Lehman Brother’s bankruptcy in September 2008 and the largest GDP reduction quarter-on-quarter during

the financial crisis. I can see that the distribution has very fat tails. A common measure of the downside tail risk is

the GDP growth associated with the 5% quantile, which is denoted as the blue shaded area. The predicted value

is close to -3%, which is very close to the actual realized GDP growth in 2008:Q4.
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Figure A.2 The conditional probability for a fall in outout below a certain threshold four quarters later is displayed from
1985:Q1 onward. The blue line shows the probability that is conditioned on the baseline scenario with current GDP growth
and leverage. The red line displays the probability that is only conditioned on current GDP growth.

To focus on the impact of leverage, I compare our baseline specification to a setup where I disregard shadow

banking leverage. In this setup, I only regress future GDP growth on current GDP growth, that is xt = [∆yt ϕt].

This specification has much thinner tails. The prediction of the 5% quantile is now around -1%, which is far from

the actual realized value. This shows that the high leverage in 2007:Q4 indicates an increasing tail-risk in line

with the structural model.

A.6.2 Probability Measure of a Severe Crisis

Another important prediction of the model is that the probability of a financial crisis already increased substantially

prior to 2007 and thus prior to the onset of the financial crisis. For this reason, I want to assess the downside

risk that is associated with a financial crisis over the entire horizon. As a measure of downside risk, I use the

probability that GDP drops below a specified level y⋆.9 This can be written as

Probt(ȳt+4 < y⋆|xt) =
∫ y⋆

−∞
f(ȳt+h;xt, µt, σt, αt, νt) (A.110)

9López-Salido and Loria (2020) use this conditional probability approach in the context of inflation.
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where I condition on the explanatory variables xt. I choose the threshold value as the fall in GDP as in 2008:Q4,

which is

y⋆ = ȳ2008:Q4 (A.111)

The measure Probt(ȳt+4 < ȳ2008:Q4|xt) gives us the conditional probability that GDP growth is below the

realized value of 2008:Q4. The purpose is to relate this measure to the probability of a financial crisis as in 2008.

Compared to the structural model, I cannot use the realization of a bank run. Instead, I rely on the connection

between a severe drop in output that is associated with a financial crisis.

Figure A.2 shows the probability Probt(ȳt+4 < ȳ2008:Q4|xt) from 1985:Q1 onwards. The interpretation is

as follows. For instance, the conditional probability in 1985:Q1 for a severe output drop one year ahead, that is in

1986:Q1, below y⋆ is basically 0%. The measure increases around the three recessions (1990-91,2001,2007-2009)

in our sample. One important difference for the financial crisis compared to the other recessions is that the

tail-risk increases already substantially before. In particular, I can see a steady increase from 2004 onwards in

this measure in line with the predictions of the structural model. The conditional probability rises up to 5% in

2007:Q4, which is the prediction related to 2007:Q4 .

I am interested in assessing the importance of leverage. For that purpose, I compare our baseline version in

which I condition on current GDP growth and leverage to a scenario in which the probability is only conditioned

on GDP growth. First, our baseline case reports a much higher risk of a large reduction from 2004 onwards

until the onset of the crisis. The probability in the baseline version is around 2 percentage points higher during

this period. Therefore, the model without leverage has a significantly lower tail-risk prior to the financial crisis.

Taken together, the non-structural model highlights also the two most important observations. First, shadow

bank leverage is important to capture an increase in tail-risk. Second, the tail-risk increases already in 2004,

considerably prior to the outburst of the financial crisis.
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Appendix B

Appendix to Chapter 2

B.1 Non-linear Solution Method

Solving the representative household’s problem yields the Euler equation

1 = βRtEt
[
ζdt+1
ζdt

(
Ct
Ct+1

)σ 1
Πt+1

]
, (B.1)

where Πt = Pt/Pt−1 is gross inflation, and the labor supply

Wt = χNη
t c
σ
t , (B.2)

The firm j produces output with labor as the only input

Yt(j) = A Ht(j)α (B.3)

where At denotes the total factor productivity, which follows an exogenous process. The firm j sets the price

Pt (j) of its differentiated goods j so as to maximize its profits:

Divt(j) = Pt(j)
(
Pt(j)
Pt

)−ϵ
Yt
Pt

− α mct

(
Pt(j)
Pt

)−ϵ

Yt − φ

2

(
Pt(j)

ΠPt−1(j) − 1
)
Yt, (B.4)

subject to the downward sloping demand curve for intermediate goods. The parameter φ > 0 measures the cost

of price adjustment in units of the final good.

The first order condition is

(ϵ− 1)
(
Pt(j)
Pt

)−ϵ
Yt
Pt

= ϵ α MCt

(
Pt(j)
Pt

)−ϵ−1
Yt
Pt

− φ

(
Pt(j)

ΠPt−1(j) − 1
)

Yt
ΠPt−1(j)+

φEtΛt,t+1

(
Pt+1(j)
ΠPt(j)

− 1
)
Pt+1(j)
ΠPt(j)

Yt+1

Pt(j)
(B.5)
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where the stochastic discount factor Λt,t+1 is

Λt,t+1 = βEt

[(
ζdt+1
ζdt

)(
Ct
Ct+1

)σ]
(B.6)

In equilibrium all firms choose the same price. Thus, the New Keynesian Phillips curve is

Et
[
φ

(
Πt+1

Π − 1
)

Πt

Π

]
= (1 − ϵ) + ϵ α MCt + φEt

[
Λt,t+1

(
Πt+1

Π − 1
)

Πt+1

Π
Yt+1

Yt

]
(B.7)

The monetary authority sets the interest rate Rt responding to inflation and output from their corresponding

targets. The monetary authority faces a zero lower bound constraint. The policy rule reads as follows

Rt = max
[

1, R
(

Πt

Π

)θΠ (Yt
Y

)θY ]
. (B.8)

where Π and Y denote the inflation target which pins down the inflation rate in the deterministic steady state and

the natural output level, which is the level output that would arise if prices were flexible.

The resource constraint is

Ct = Yt

[
1 − φ

2

(
Πt

Π − 1
)2
]

(B.9)

The model is solved with global methods. The agents take the presence of the zero lower bound into account

and form their expectations accordingly. Therefore, the possibility of hitting the zero lower bound in the future

affects potentially the equilibrium outcome in times of unconstrained monetary policy. We use time iteration

(Coleman 1990 and Judd 1998) with piecewise linear interpolation of policy functions as in Richter et al. (2014).1

Expectations are calculated using numerical integration based on Gauss-Hermite quadrature.

The state variable is ζdt , while the policy variables are Πt and labor Ht:

Πt = g1(ζdt ) (B.10)

Ht = g2(ζdt ) (B.11)

where g = (g1, g2) and gi : R1 → R1. To solve the model, we approximate the unknown policy functions with

piecewise linear functions g̃i that can be written as:

Πt = g̃1(ζdt ) (B.12)

Ht = g̃2(ζdt ) (B.13)

1This approach can handle the non-linearities associated with zero lower bound. Richter et al. (2014)
demonstrate that linear interpolation outperforms Chebyshev interpolation, which is a popular alternative, for
models with zero lower bound. The kink in the policy functions is more accurately located which gives a more
precise solution.
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The time iteration algorithm to solve for the policy functions is summarized below:

1. Define a discretized state grid [ζdt , ζdt ] and integration nodes ϵζ
d = [ϵζ

d

t , ϵ
ζd

t ].

2. Guess the piece-wise linear policy functions g̃(ζdt ).

3. Solve for all time t variables for a given state vector ζdt . The policy variables are:

Πt = g̃1(ζdt ) (B.14)

Ht = g̃2(ζdt ) (B.15)

so that the remaining variables are given as:

Yt = AH1−α
t (B.16)

Ct = Yt(1 − φ

(
Πt

Π − 1
)2
/2) − g (B.17)

Rt = max
[

1, R
(

Πt

Π

)θΠ(Yt
Y

)θY ]
(B.18)

Wt = χNη
t c
σ
t (B.19)

MCt = Wt

(1 − α)AHt(j)−α (B.20)

Calculate the state variable for period t+ 1 at each integration node i:

ζi,dt+1 = exp
(
ρζ log(ζdt ) + ϵi,ζ

d

t+1

)
For each integration node ζi,dt+1, calculate the policy variables and solve for output and consumption:

Πi
t+1 = g̃1(ζi,dt ) (B.21)

Hi
t+1 = g̃2(ζi,dt ) (B.22)

Y it+1 = AHi
t+1

1−α
(B.23)

Cit+1 = Y it+1(1 − φ

(
Πi
t+1
Π − 1

)2
/2) − g (B.24)

Calculate the errors for the Euler Equation and the New Keynesian Phillips curve

err1 = 1 − βRtEt

[ζdt+1
ζdt

( Ct
Ct+1

)σ 1
Πt+1

]
, (B.25)

err2 = φ

(
Πt+1

Π − 1
)

Πt

Π − (1 − ϵ) − ϵMCt(1 − α) − EtφΛt,t+1

(
Πt+1

Π − 1
)(

Πt+1

Π

)
Yt+1

Yt
.

(B.26)

where the expectations are numerically integrated across the integration nodes. The nodes and weights are

based on Gaussian-Hermite quadrature.
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4. Use a numerical root finder to minimize the errors for the equations.

5. Update the policy functions until the errors at each point of the discretized state are sufficiently small.

B.2 A Model with Binary Realizations of the Shock

In this binary case, we treat the Taylor rule in the good state and all the other remaining equilibrium equations

separately. Using different candidates of inflation for the good state (ΠH), we calculate two nominal interest

rates for the good state RH1(ΠH) and RH2(ΠH). The first one stems from the Taylor rule, while the other one

results from the other remaining equations.

The candidate for the nominal interest rate RH1(ΠH) resulting from of the Taylor rule in the good state reads

as follows:

RH1 = max
[

1, R
(

ΠH

Π

)θΠ
]

This equation corresponds to the red line in Figure 2.2.

The other equilibrium equations in the good state give another solution for the nominal interest conditionally

on ΠH . The remaining equations in the good state are given as:

1 = βRH2
[
(1 − p) ζ

d
L

ζdH

(CH
CL

)σ 1
ΠL

+ p
1

ΠH

]
, (B.27)

Y H = A(HH)1−α, (B.28)

(1 − α)MCHA = χHH
t

η
cH

σ
, (B.29)

CH = Y H(1 − φ

(
ΠH

Π − 1
)2
/2) (B.30)

φ

(
ΠH

Π − 1
)

ΠH

Π = (1 − ϵ) + ϵMCH(1 − α) (B.31)

+ φβ

[
(1 − p) ζ

d
L

ζdH

(CH
CL

)σ(ΠL

Π − 1
)(

ΠL

Π

)
Y L

Y H
+ p

(
ΠH

Π − 1
)(

ΠH

Π

)]

Since the good-state equilibrium outcomes depend on the bad state, we have to solve for the equilibrium in the

bad state. An equilibrium in the bad state satisfies the following equations:

RL = max
[

1, R
(

ΠL

Π

)θΠ
]

(B.32)

1 = βRL
[
(1 − q)ζ

d
H

ζdL

(CL
CH

)σ 1
ΠH

+ q
1

ΠL

]
, (B.33)

Y L = A(HL)1−α, (B.34)

(1 − α)MCLA = χHL
t

η
cL
σ
, (B.35)

CL = Y L(1 − φ

(
ΠL

Π − 1
)2
/2) (B.36)
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Figure B.1 Simulations of inflation and nominal interest rate during an artificial recession. The economy is at its stochastic
steady state in period 0, 1, and 2. From period 3 through period 8, the economy is hit by a one-standard-deviation negative
preference shock in every period. Starting from period 9 no more shocks occur and the economy evolves back to its stochastic
steady-state equilibrium. Units: percentage points of annualized rates.

φ

(
ΠL

Π − 1
)

ΠL

Π = (1 − ϵ) + ϵMCL(1 − α) (B.37)

+ φβ

[
(1 − q)ζ

d
H

ζdL

(CL
CH

)σ(ΠH

Π − 1
)(

ΠH

Π

)
Y H

Y L
+ q

(
ΠL

Π − 1
)(

ΠL

Π

)]

Equations (B.27) to (B.32) give us a solution for the nominal interest rate RH2(ΠH). The nonlinear root solver is

applied at this step as this system cannot be solved analytically.2 The mapping of ΠH to RH2 corresponds to the

blue solid line in Figure 2. To calculate a hypothetical economy without a zero lower bound in the bad state, we

we assume that the ZLB constraint is not binding in that state. This gives us the dash-dotted blue line in Figure

2.2.

An equilibrium for the economy exists for a given inflation in the good state ΠH if RH1(ΠH) = RH2(ΠH ).

This corresponds to an intersection of the red and the blue line in Figure 2.2. Looping over ΠH allows to check

the existence of equilibria and find all possible solutions of the economy with binary realizations of the preference

shock.

B.3 The Asymmetric Strategy is Not a Makeup Strategy

In this appendix we will show that the asymmetric strategy does not require the central bank to engineer an

overshooting in inflation after a ZLB episode as makeup strategies (e.g., price-level targeting, average inflation

targeting. etc.) do. To this end, we simulate the economy under a sequence of negative shocks large enough to

bring the economy to the zero lower bound for a certain number of periods. We assume that the central bank is

following the asymmetric rule that removes the deflationary bias. Figure B.1 shows the path for the endogenous

2To handle the kink in the Taylor rule in the low state, we use a guess and verify approach in practice. First,
we solve the whole system assuming that the Taylor rule is not binding in the bad state. We keep the results if the
result does not violate the zero lower bound in the bad state. Then, we guess that zero lower bound is binding in
the bad state and keep the results if this is indeed the bad-equilibirum outcome.
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variables in the three cases. We assume that the economy is initially at its stochastic steady states and the size of

the each shock is one standard deviation. In period 3, a sequence of negative demand shocks hits the economy.

Starting from period 9 no more shocks occur and the economy slowly goes back to the stochastic steady state.

In the left plot of Figure B.1, the ZLB is binding when the negative preference shocks hit the economy. After

the ZLB period, no more shocks hit the economy and the central bank lifts the nominal interest rate off the ZLB

constraint. In the right plot of Figure B.1, the dynamics of inflation in the simulation is reported. Inflation falls

as the economy is hit by the negative preference shocks. As the effects of these shocks fade away, the inflation

rate converges to the desired two-percent inflation target. Note that inflation converges to the desired target from

below because the central bank does not try to overshoot its inflation target as it would have done if it had adopted

a makeup strategy.

B.4 Strategic Interest Rate Cuts

We showed that if the central bank seizes the opportunity of reflating the economy by adopting an asymmetric rule

after an inflationary shock arises, social welfare generally increases. If no opportunity to reflating the economy

arises, the central bank can still remove the deflationary bias and improves welfare by cutting more aggressively

the interest rate if inflation is below target while clarifying that the response to inflation above target is unchanged.

This alternative asymmetric rule also eliminates the macroeconomic biases. The upper panels of Figure B.2

report the behavior of the macroeconomic biases defined with respect to the stochastic steady state (blue solid

lines) and the observable averages (red dashed lines) as the response to below-target inflation, θΠ, varies. The

response to positive deviations of inflation from the target is the same as in the symmetric rule (θΠ = 2). The red

star denotes the distortions under a symmetric rule (θΠ = θΠ = 2) as in the baseline calibration. The response to

inflation below target that zeroes the biases is approximately three.

The effects of adopting this asymmetric rule on the probability of hitting the ZLB and the frequency of ZLB

episodes is ambiguous ex ante. On the one hand, lowering more vigorously the nominal interest rate to fight

against deflationary pressures could increase the probability of hitting the zero lower bound. On the other hand,

committing to respond more aggressively to negative deviations of inflation from target eliminates the deflationary

bias and thereby raises the long-term nominal interest rate. Higher nominal rates cause the likelihood of hitting

the ZLB to fall. As shown in the lower panels of Figure B.2, the asymmetric rule that allows the central bank to

remove the macroeconomic bias (θΠ = 3) lowers the probability of hitting the ZLB and the expected frequency

of ZLB episodes.
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Figure B.2 Macroeconomic biases due to risk of hitting ZLB under the asymmetric rule. The biases are computed relatively
to the stochastic steady state (blue solid line) or the average inflation (red dashed-dotted line) and are shown in the upper
panels. The output gap is expressed in percentage points and inflation gap is expressed in percentage points of annualized
rates. The lower panels show the risk of hitting the ZLB in the next period (left) and the expected frequency of the ZLB (right)
as the response to inflation below target varies. The frequency is in percentage points and it is computed as the ratio between
the number of periods spent at the zero lower bound and the total sample size (300,000). The probability of hitting the zero
lower bound in the next period is conditional on being at the stochastic steady state in the current period and is expressed in
percentage points.
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Appendix C

Appendix to Chapter 3

C.1 Non-Linear Equilibrium Equations

Households

Ct = WtLt +Dt−1
RDt−1
Πt

ηt−1 −Dt + ΠP
t − τt (C.1)

βRDt ηtEt
Λt,t+1

Πt+1
= 1 (C.2)

χLφt = C−σ
t Wt (C.3)

(C.4)

Banks

µtϕt + νt ≥ λ
( 1

1 − δB
ϕt − δB

1 − δB

)
(C.5)

ψt = µtϕt + νt (C.6)

µt = βEtΛt,t+1 (1 − θ + θψt)
RKt+1 −Rt

Πt+1
(C.7)

νt = βEtΛt,t+1 (1 − θ + θψt)
Rt

Πt+1
(C.8)

QtSt = ϕtNt (C.9)

Rt = (ηtRDt ) 1
1 − δB

−RAt
δB

1 − δB
(C.10)

Nt = NS
t +NN

t (C.11)

NS
t = θNt−1

RKt −Rt−1ϕt−1 +Rt−1

Πt
(C.12)

NN
t = ωN

St−1

Πt
(C.13)
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Production, Investment and New Keynesian Phillips Curve

Yt = APKα
t−1L

1−α
t (C.14)

Wt = Pmt (1 − α)Yt/Lt (C.15)

Rkt = (Pmt αYt/Kt−1 + (1 − δ)Qt)
Qt−1

Πt (C.16)

Qt = 1
(1 − ηi)ai

( It
Kt−1

)ηi
(C.17)

Kt = (1 − δ)Kt−1 + (ai(It/Kt−1)(1−ηi) + bi)Kt−1 (C.18)(
Πt

Π − 1
)

Πt

Π = ϵ

ρr

(
Pmt − ϵ− 1

ϵ

)
+ βEtΛt,t+1

Yt+1

Yt

(
Pit+1

Πt
− 1
)

Πt+1

Π (C.19)

Policy Rule, Interest Rates, Government Budget Constraint and Aggregate Resource Constraint

RAt = max

RA(Πt

Π

)θΠ(
Yt
Y

)θY
, R̃A

 ζt (C.20)

RDt = RAt − ω(RAt ) (C.21)

RDt = 1RAt ≥RASS
[
RAt − ς

]
+ (1 − 1RAt ≥RASS )

[
ω1 + ω2 exp(ω3(RAt − 1)) + 1

]
(C.22)

τt +At =
RAt−1
Πt

At−1 (C.23)

Yt = Ct + It + ρr

2

(
Πt

Π − 1
)2

Yt (C.24)

C.1.1 Occasionally Binding Regulatory Constraint

The non-negative capital buffer is

τt = min
{
τMPP (ϕMPP − ϕMt ), 0

}
(C.25)

The market imposed leverage constraint is given from the run-away constraint

ϕMt =
νt + δB

1−δB
λ

1−δB − µt
(C.26)

Banks leverage is then given as

ϕt =
(

1
ϕMt

+ τt

)−1
(C.27)
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C.2 Data and Calibration

C.2.1 Data Sources and Construction

This section describes the data source and construction. Table C.1 shows all used series and their source. We use

euro area data from 2002Q1 until 2019Q4.1

Deposit Rate The deposit rate weights the different lending rates for varying maturities, where the rates are

from ECB SDW MIR data and the volume is based on the ECB SDW - BSI data. The used rates are the overnight

deposit rate, deposit rate up to 1 year for new business, deposit rate over 1 and up to 2 years for new business

and the deposit rate over 2 years for new business. Their contribution is weighted with their relative outstanding

amount in the balance sheet. All different rates and outstanding amounts are for deposits from households. The

constructed deposit rate RDt reads then as follows:

RDt = DS0t ×RD0t +DS1t ×RD1t +DS2t ×RD2t +DS3t ×RD3t
DS0t +DS1t +DS2t +DS3t

(C.28)

Lending Rate The lending rate uses data from the ECB SDW - MIR data and the volume to weight is based

on BSI data. For the lending rate, we use up to 1 year, over 1 year and below 5 years, and over 5 years to

non-financial corporates and outstanding amounts. The volume data has the same maturity and is the outstanding

amount to all non-financial corporations. The constructed lending rate RKt is the weighted index of the different

rates:

RKt = LR1t × LS1t + LR2t × LS2t + LR3t × LS3t
LS1t + LS2t + LS3t

(C.29)

Policy Rate The main policy rate is the ECB’s deposit facility rate. Euribor 3-month and the Eonia rate are the

typical alternatives in the New Keynesian literature for the Euro Area.

Government Assets The share of government assets uses data from the ECB SDW - BSI data. We use loans to

Euro area government hold by Monetary Financial Institutions (MFIs), Euro area government debt securities hold

by MFIs, required reserves hold by credit institutions and excess reserves hold by credit institutions.2 This is

compared to the total assets held by the MFIs. The consolidated balance sheet of the euro area MFIs is used for

each series. The different measures include to a different extent the reserves:

A1
t

St +A1
t

= LG+ LS

TA
(C.30)

1The data from the euro area has a changing composition.
2There are two important regulatory changes for the reserve requirement. Initially, the reserve requirement

was 2% of the deposit base, which was lowered to 1% from 18 January 2012. Furthermore, a two-tier system takes
effect rom 30 October 2019. This system exempts credit institutions from remunerating part of their excessive
holdings.
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A2
t

St +A2
t

= LG+ LS +RR

TA
(C.31)

A3
t

St +A3
t

= LG+ LS +RR+ ER

TA
(C.32)

The different series can be seen in the lower panel of Figure 3.3 in the main text.

Bank Level Deposit Rates The deposit rates for different banks are based on the ECB IMIR data.

Government bond yield The government bond yield is shown for the German 1 year bond, where the data is

extracted from Datastream.

Table C.1 Data Sources

Data Name Source
a) Deposit Rate
Overnight Deposit Rate, Households (HH) RD0 ECB SDW - MIR
Deposit rate, maturity up to 1 year, HH, New Business RD1 ECB SDW - MIR
Deposit rate, maturity over 1 and up to 2 years, HH, New Business RD2 ECB SDW - MIR
Deposit rate, maturity over 2 years, HH, New Business RD3 ECB SDW - MIR
Overnight deposits, Total, HH DS0 ECB SDW - BSI
Deposits, maturity up to 1 year, HH, Outstanding DS1 ECB SDW - BSI
Deposits, maturity over 1 and up to 2 years, HH,Outstanding DS2 ECB SDW - BSI
Deposits, maturity over 2 years, HH, Outstanding DS2 ECB SDW - BSI
b) Lending Rate
Lending rate, maturity up to 1 year, NF-Corp., Outstanding (Out) LR1 ECB SDW - MIR
Lending rate, maturity over 1 and up to 5 years, NF-Corp., (Out) LR2 ECB SDW - MIR
Lending rate, maturity over 5 years, NF-Corp., Outstanding LR3 ECB SDW - MIR
Loans, maturity up to 1 year, NF-Corp., Outstanding LS1 ECB SDW - BSI
Loans, maturity over 1 and up to 5 years, NF-Corp., Outstanding LS2 ECB SDW - BSI
Loans, maturity over 5 years, NF-Corp., Outstanding LS3 ECB SDW - BSI
c) Policy Rate
ECB Deposit facility rate PR1 ECB SDW - FM
Euribor 3-month PR2 ECB SDW - FM
Eonia rate PR3 ECB SDW - FM
d) Government Asset
Loans to government, MFI, Stock LG ECB SDW - BSI
Government debt securities, MFI, Stock LS ECB SDW - BSI
Reserve Maintenance Required Reserves, Credit Inst. RR ECB SDW - BSI
Reserve Maintenance Excess Reserves, Credit Inst. ER ECB SDW - BSI
Total Assets, MFI TA ECB SDW - BSI
e) Bank Level Data
Overnight Deposit Rate, Households RDi ECB SWD - IMIR
f) Government bond yield
German government 1 year bond yield G1Y Datastream
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C.2.2 Non-Linear Least Squares

The model function that relates the deposit rate data ddi and the policy rate data pdi (conditional on being below

the threshold) is given as

ddi = (η1 + η2 exp(η3pdi)

We impose two restrictions, which allow us to express η1 and η2 in terms of η3. First, the markdown at the

threshold value corresponds to ς . Second, the pass-through at the threshold value is 1, which implies perfect

pass-through. Thus, the shape parameters η1 and η2 can be written as:

η1 = iSS − ς − 1
η3

η2 = 1
η3 exp(η3iSS)

where iSS is the threshold parameter.

The non-linear least squares finds now the parameter η3 that minimizes the squared residuals ri from the

model function:

ri = ddi −
(
iSS − ς − 1

η3
+ exp(η3pdi)
η3 exp(η3iSS)

)

C.3 Structural Interpretation of the Risk Premium Shock

The risk premium shock of Smets and Wouters (2007) is empirically very important in structural DSGE models,

and can explain the zero lower bound episodes. However, its structural interpretation as a risk premium shock is

heavily criticized in Chari et al. (2009). They argue that it is best to be interpreted as a flight to quality shock that

affects the demand for a safe and liquid asset such as government debt. Fisher (2015) microfounds this argument

and indeed shows that this shock can be interpreted as a preference shock for treasury bills.

We show that the risk premium shock in our model can be interpreted as a a flight to quality shock in

government bonds in line with the argument above. For this reason, we incorporate government debt as an

additional asset that earns the one period ahead nominal gross interest rate RGt . Following Fisher (2015), the

government bond enters the household utility function as additive term and is subject to an exogenous preference

shock Ωt so that the household problem is given as:

max
Ct,Lt,Dt,Bt

Et

∞∑
t=0

βt

[
C1−σ
t

1 − σ
− χ

L1+φ
t

1 + φ
+ ΩtU(Bt)

]
s.t. PtCt = PtWtLt + Pt−1Dt−1R

D
t−1ηt−1 + Pt−1Bt−1R

B
t−1 − PtDt − PtBt + PtΠP

t − Ptτt

where U(·) is positive, increasing and concave. ηt is not an exogenous innovation in the model in this setup.

Instead, the nominal gross interest is now artificially divided as RDt−1ηt−1 to better illustrate the mapping between
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the flight to quality shock and the risk-premium shock. The first-order conditions with respect to deposits and

government bonds are

βRDt ηtEt
C−σ
t+1

Πt+1
= C−σ

t

βRGt Et
C−σ
t+1

Πt+1
= C−σ

t − ΩtU ′(Bt)

which can combined to:

RDt ηt = RGt
1

1 − ΩtU ′(Bt)

This equation suggests that ηt captures changes in the preference for the safe asset Ωt. In particular, an exogenous

increase in the demand for the government bond would require that either the nominal deposit rate would increase

or the return on government bonds would fall. If RGt does not respond to offset entirely the impact of the shock,

then there is a direct mapping from the flight to quality preference shock to our risk premium shock. ηt accounts

for the rise in the nominal interest rate shock that resulted from a change in the risk premium. The rise in the

nominal interest rate resulting from the preference shock can be accounted by an adjustment in ηt ,which we can

then use as the risk premium shock. To avoid any impact on the households budget constraint, the government

bond can be in zero net supply. 3

Regarding the bankers, their maximization problem is not directly affected from the flight to quality preference

shock. The only impact on them is on the change in the nominal interest rates on deposits exactly as in the model.

However, the increased funding costs for the banks via deposits are taken into account.

To conclude, there is a direct mapping of our version of the risk premium shock to the interpretation in Chari

et al. (2009) and Fisher (2015). An increase in the risk premium of deposits captures an increased demand in

government bonds via a substitution effect.

Flight to quality and deposits Since our original model abstracts from government bonds for simplicity, an

alternative approach would be to introduce a preference of holding deposits in the utility function instead of

government bonds. The exogenous shock ωt targets now the preference for deposits:

max
Ct,Lt,Dt

Et

∞∑
t=0

βt

[
C1−σ
t

1 − σ
− χ

L1+φ
t

1 + φ
+ ωtU(Dt)

]
s.t. PtCt = PtWtLt + Pt−1Dt−1R

D
t−1ηt−1 − PtDt + PtΠP

t − Ptτt

3One other potential caveat could be that this shock could actually also capture potential heterogeneities in the
pass-through of deposits and governments. Nevertheless, the shock would still capture the impact of flight to
quality just adjusted for the different pass-through.
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where ηt is not an exogenous innovation in this setup, but part of the interest rate as before. The first-order

condition can be written as

βRDt ηtEt
Λt+1

Πt+1
= 1 + ω⋆tU(Dt)

where the shock is normalized with respect to marginal utility of consumption Ω⋆t = ωt/C
−σ
t . Thus, the shock

can be interpreted as a preference shifter of deposits: ηt = 1 + ωtU(Dt). To capture the idea of a flight to safety

to government bonds that increases the nominal interest rate of deposits, it is important to realize that the shocks

Ωt and ωt are inversely related. A flight to safety scenario implies an increase Ωt and a reduction ωt so that etat

increases. As before, this setup is consistent with our modelling of the banking sector

Bank Default Finally, an alternative could be that the wedge accounts for the probability of default of the banks

as our model abstracts from idiosyncratic default and bank runs. If the default probability of deposits is pt, then

the budget optimization problem would be:

max
Ct,Lt,Dt

Et

∞∑
t=0

βt

[
C1−σ
t

1 − σ
− χ

L1+φ
t

1 + φ

]
(C.33)

s.t. PtCt = PtWtLt + Pt−1Dt−1R
D
t−1ηt−1(1 − pt) − PtDt + PtΠP

t − Ptτt (C.34)

where ηt should again be interpreted as part of the nominal interest rate. The Euler equations reads as:

βRDt ηtEt(1 − pt+1)Λt,t+1

Πt+1
= 1

Therefore, our risk premium shock would be a proxy for the impact of the probability of default of the bank. It is

important to note that the difference in timing between the risk shock and the probability of default. While ηt

is known in period t, the probability of default is uncertainty and we have Etpt+1. This approach requires that

the problem of the bank side is adjusted behind the increased in nominal rates. Rational bankers would take the

probability of (idiosyncratic) default into account in their maximization framework. Thus, the model could be

extended to include banking default.

C.4 Macroprudential Policy Rule Parameters

The rule consists of two parameters that interact with each other. FigureC.1 shows the impact on welfare for

different combinations of ϕMPP and τMPP . The optimal rule has a rather large anchor value with a small

response parameter. This ensures the build-up of a small buffer that can then be released during a crisis. If the

anchor value is too large, the economy has on average too many buffers that it never releases.
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Figure C.1 Welfare for response to deviations τMP P and anchor values ϕMP P . τMP P is varied on the horizontal axis.
Welfare is on the horizontal axis

C.5 Solution Method

The non-linear model is solved with policy function iterations. In particular, we use time iteration (Coleman,

1990a) and linear interpolation of the policy functions as in Richter et al. (2014). We solve for the policy functions

and law of motions. We rewrite the model to use net worth Nt as state variable instead of Dt−1Rt−1 to ease the

computation.

The algorithm has the following steps:

1. Define the state space and discretize the shock with the Rouwenhorst method

2. Use an initial guess for the policy functions

3. Solve for all the time t variables for a given state vector and a law of motion of net worth. Given the state

vector Kt−1, Nt, ηt, ζt, the policy variables Qt, Ct, ψt,Πt and the law of motion of the net worth, we can

solve for the following variables in period t

It = (Qt(1 − ηi)ai)
1
ηi Kt−1 (C.35)

Yt = Ct + It(
1 − ρr

2
(Πt

Π − 1
)2) (C.36)

Lt =
(

Yt
Kα
t−1

) 1
1−α

(C.37)

Wt = χLφCσ (C.38)

MCt = Wt

1 − α

L

Y
(C.39)

RAt = RA
(Πt

Π

)κΠ(Yt
Y

)κY
(C.40)
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RDt = 1RAt ≥RASS
[
RAt − ς

]
+ (1 − 1RAt ≥RASS )

[
ω1 + ω2 exp(ω3(RAt − 1)) + 1

]
(C.41)

The endogenous state variables are capital and net worth, which are given from the law of motion of capital

and the guess for the law of motion of net worth

Kt = (1 − δ)Kt +
(
ai

(
It
Kt

)1−ηi
+ bi

)
Kt−1 (C.42)

Nt+1 = T (Kt−1, Nt, ζt, η, ζt+1, ηt+1) (C.43)

Note that capital is predetermined, while net worth depends on the shocks. Therefore, we have a

net wroth at each integration node for the shocks. At each node i, we then now the policy function

Qit+1, C
i
t+1, ψ

i
t+1,Πi

t+1. At this step, we linear interpolate the policy functions

Iit+1 =
(
Qit+1(1 − ηi)ai

) 1
ηi Kt (C.44)

Y it+1 =
Cit+1 + Iit+1(

1 − ρr

2

(
Πit+1

Π − 1
)2) (C.45)

Lit+1 =
(
Y it+1
Kα
t

) 1
1−α

(C.46)

W i
t+1 = χ

(
Lit+1

)φ (
Cit+1

)σ
(C.47)

MCit+1 =
W i
t+1

1 − α

Lit+1
Y it+1

(C.48)

Rk,it+1 =
MCit+1αY

i
t+1/Kt +Qit+1(1 − δ)

Qt
Πi
t+1 (C.49)

We can now calculate the following items:

ϕt = QtKt

Nt
(C.50)

Rt = RDt ηt
1

1 − δB
−RAt

δB

1 − δB
(C.51)

µt = βEt

(
Ct
Ct+1

)σ
(1 − θ + θψt)

(
RKt+1 −Rt

Πt+1

)
(C.52)

νt = βEt

(
Ct
Ct+1

)σ
(1 − θ + θψt)

(
Rt

Πt+1

)
(C.53)

where the expectations are based on the weighting of the different integration nodes. The Rouwenhorst

method discretizes the shocks and gives the weighting matrix. Finally, we can calculate the errors for the

four remaining equations

err1 =
(

Πt

Π − 1
)

Πt

Π −

(
ϵ

ρr

(
MCt − ϵ− 1

ϵ

)
+ βEt

(
Ct
Ct+1

)−σ
Yt+1

Yt

(
Πt+1

Πt
− 1
)

Πt+1

Π

)
(C.54)
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err2 = βRDt ηtEt

(
Ct+1

Ct

)−σ 1
Πt+1

(C.55)

err3 = ψt − (µtϕt + νt) (C.56)

err4 = ψt −
(
λ
( 1

1 − δB
ϕt − δB

1 − δB

))
(C.57)

We minimize the errors using a root solver the policy functions in period t. The policy functions for period

t+ 1 are taken from the previous iteration.

4. This step is only relevant for the extension with the countercyclical capital rule. Otherwise, it can be

skipped. Check if the occasionally binding constraint is binding. If we introduce the capital requirement, it

is occasionally binding. Therefore, we have to check if

ϕR > ϕM (C.58)

where ϕM is the market based leverage that we calculated as ϕ in the previous step. If this is the case, the

capital constraint is binding. We now replace two equations from before, namely we impose directly

ϕ = ϕR (C.59)

Furthermore, one of the remaining equations is now adjusted as the market based leverage constraint is not

binding anymore. Therefore, we remove ϕt = QtKt
Nt

from the calculations and actually minimize the error:

err4 = ϕt − QtKt

Nt
(C.60)

Note that we do not need ψt ≥
(
λ
(

1
1−δB ϕt − δB

1−δB

))
from the previous step as it is not binding.

5. Update the law of motion for net worth. We have assumed that we know the actual law of motions. Using

the policy functions, we improve our guess of the policy function. Using the result from the previous steps

(depending on the binding of the constraint), we update it as follows

N i
t+1 = θ

((
Rk,it+1 −Rt

)
ϕt −Rt

)
+ ωKt (C.61)

We have to update the law of motion for each possible shock realizations next period.

6. Check convergence for the policy functions and the law of motion of net worth for a predefined criteria
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Appendix D

Appendix to Chapter 4

D.1 Comprehensive Contact Tracing Technology

In this appendix we complete the derivation of the probability of testing positive for newly infected and untested

asymptomatic agents under the comprehensive contact tracing technology.

Conditioning on Type-A and Type-T remaining untested asymptomatic through period t. Since tracing

is conducted in period t, the probability distributions for Type-A and Type-T subjects have to be conditioned

on the event that these subjects did not test positive at the end of period t − 1 and, thereby, remain untested

asymptomatic through period t.

We rely on the Bayes theorem to condition the probability distributions for Type-A and Type-T agents on not

getting tested at the end of period t− 1 :

fA,At−1|t(k) =
fA,At−1 (k)

{
1 −

[
1 − (1 − πIS)k

]
π0
t−1,T (1 − πF )

}
∑φc(cst−1)
k=0 fA,At−1 (k)

{
1 −

[
1 − (1 − πIS)k

]
π0
t−1,T (1 − πF )

} , (D.1)

and

fT,At−1|t(k) =
fT,At−1 (k)

{
1 −

[
1 − (1 − πIS)k

]
π0
t−1,T (1 − πF )

}
∑φc(cst−1)
k=0 fT,At−1 (k)

{
1 −

[
1 − (1 − πIS)k

]
π0
t−1,T (1 − πF )

} , (D.2)

where
[
1 − (1 − πIS)k

]
denotes the probability that at least one of the existing T-links or A-links contacts is with

an asymptomatic subject who revealed symptoms in period t− 1, making the other subject traceable. Conditional

on being traced in period t− 1, the subject will test positive with probability π0
t−1,T (1 − πF ) at the end of the

same period. As we will formally define later, π0
t−1,T is the probability of being tested at the end of period t− 1

based on tracing the t− 1 contacts.
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All other distributions do not need to be adjusted.1 It is convenient to write: fA,Tt−1|t(k) = fA,Tt−1 (k), fT,Tt−1|t(k) =

fT,Tt−1 (k), fS,Tt−1|t(k) = fS,Tt−1 (k), and fS,At−1|t(k) = fS,At−1 (k).

Active Links Some of the A-links are not relevant for traceability and testing in period t because infected

asymptomatic subjects may become symptomatic or recover or test positive in period t− 1. T-links could also

become non-relevant for traceability and testing in period t because some of the newly infected agents test positive

at the end of period t − 1. Therefore, it is convenient to distinguish between total links (or simply links) and

active links, which are those links with infected people who may still reveal symptoms in period t and can make

the subjects traceable in that period.

Let us start considering the T -links first. The probability that out of k T-links, k of them will be still active in

period t is given by the following binomial distribution:

gi,Tt−1(kt−1|kt−1) = B
(
kt−1, kt−1,

(
1 − πTP,t−1(i)

))
, (D.3)

where the probability of success (i.e., the link remains active) is the probability for the newly infected subjects met

by the type A, or Type-T, or Type-S agents of not testing positive at the end of period t− 1; that is, 1 − πTP,t−1(i),

for each type of agent i ∈ {A, T, S}. Note that these probabilities depend on the Type i of the agent establishing

the contact with newly infected agents (the T-link). These probabilities are derived in Appendix D.2.

The final step is then to combine this distribution with the appropriate distribution f i,jt−1|t(kt−1) –derived in

the previous section– to obtain the marginalized probability distribution of active T-links for each type as follows:

gi,Tt−1(kt−1) =
φC(cst−1)+φN (nst−1)+φo∑

k=0
gi,Tt−1(kt−1|k)f i,jt−1|t(k), i ∈ {A, T, S}. (D.4)

As far as the active A-links, it is first important to realize that, unlike T-links, A-links can also become inactive

as infected asymptomatic subjects may become symptomatic or may recover in period t− 1. Another difference

with T-links is that the probability that the A-link will remain active in period t depends on whether the Type-A,

or Type-T, or Type-S individual is traceable at time t− 1. This is because if Type-A, Type-T, or Type-S agent is

traceable in period t− 1, then at least one of their A-links must have turned symptomatic in that period. In this

case, the probability for the A-link to remain active is lower because it could have been this very A-link to have

made the Type-A, or Type-T, or Type-S agent traceable.2 The derivation of the distribution of the active A-links

gi,At−1(kt−1) for i ∈ {A, T, S} is tedious and thereby we refer the interested reader to Appendix D.3.

1The distributions fT,Tt−1|t(k) and fA,Tt−1|t(k) do not need to be adjusted. The reasons is that meeting with newly
infected people in period t − 1 does not make Type-T and Type-A agents traceable in period t − 1 because it
takes at least one period for newly infected people to become symptomatic. Testing Type-S agents in period t− 1
does not affect their probabilities of having k T-links or A-links as the outcome of these tests is negative (we do
not allow for false positive in test outcomes).

2Since it takes at least one period for the newly infected to become symptomatic, this scenario and the ensuing
adjustment to the probability distribution of active links do not apply to the T-links.
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Tracing Probabilities. It is convenient to aggregate the distribution of having k active T-links gi,T and that of

having k active A-link as follows:

git−1(kt−1) =
φC(cst−1)+φN (nst−1)+φO∑

j=1
gi,Tt−1(j)gi,At−1(kt−1 − j), i ∈ {A, T, S}. (D.5)

We take the same step shown in equation (4.25) to compute the probability for each type (Type-A, Type-T,

and Type-S) to be traceable due to one of their t− 1 contacts

π1,i
C,t =

φC(cst−1)+φN (nst−1)+φO∑
k=0

[
1 − (1 − πIS)k

]
git−1(k), i ∈ {A, T, S}. (D.6)

These are the probabilities that Type-A, Type-T, Type-S agents become traceable in period t because of their

contacts in period t− 1. These probabilities are used in the main text to define the probability of testing positive

for these three type of agents. See equation (4.34).

D.2 Active T-Links

The objective of this appendix is to derive analytically the probability that a T-link will become inactive (i.e., no

longer relevant for contact tracing), πTP,t−1(i), for the three types i ∈ {A, T, S}. Since Type-T and Type-S agents

cannot infect anyone in period t− 1, the probability that their T-links will remain active in period t depends on

the average probability that a newly infected person in period t− 1 tests positive at the end of the same period. In

the main text we defined this probability, which we denote with πTP,t−1, in equation (4.37).

πTP,t−1(i) = πTP,t−1, i ∈ {T, S}. (D.7)

This is the probability to be used in the conditional distribution of active T-links introduced in equation (D.3) for

S-type and T-type agents.

As far as Type-A agents are concerned, the derivation of this probability requires a bit more work since some

of the T-links of these agents are infectious links. Therefore, the probability for an asymptomatic subject to be

tested can be written as the weighted average of the probability of being tested via one of the infection links the

asymptomatic subject has created at time t− 1, π̃TP,t−1, and the probability for the same subject to be tested via

random meetings, πTP,t−1; that is,

πTP,t−1(A) = τ

τ + (1 − τ) τt−1
π̃TP,t−1 + (1 − τ) τt−1

τ + (1 − τ) τt−1
πTP,t−1, (D.8)

where the weights reflect the fraction of infectious T-links. Note that πTP,t−1 is the same probability for susceptible

and newly infected agents to be tested at the end of period t− 1, which is shown in equation (D.7).
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The probability for a Type-A agent to be tested via the infection links they have created at time t− 1, π̃TP,t−1,

has not been derived yet. We tackle this problem by looking at the probability of being traced from the perspective

of a subject that became infected as a result of meeting the Type-A agent in period t− 1.

With this change of perspective, the probability π̃TP,t−1 can be obtained by taking three familiar steps. First,

we take the step in equation (4.25) to obtain the probability for the newly infected agents to be tested at the end of

the period:

π̃0,T
C,t−1 =

φC(cst−1)+φN (nst−1)+φO∑
k=0

[
1 − (1 − πIS)k−1

]
fTt−1(k), (D.9)

where, unlike in equation (4.25), the probability that none of the contacts of the newly infected agent will become

symptomatic, (1 − πIS), is to the power of k − 1. This tweak is motivated by the fact that it is known that the

newly infected agent cannot be traced through the link with the Type-A subject who infected them in period

t− 1.3

The second step is to obtain the probability of testing positive conditional on being traced, which is precisely

the familiar step taken in equation (4.21): π̃0,T
P,t−1 = π̃0,T

C,t−1 · π0
t−1,T · (1 − πF ). The third step is familiar too: we

have to take into account the possibility that the agents infected by the Type-A agent in period t− 1 can be tested

because of their contacts in the previous period t− 2. Thus, we write π̃TP,t−1 = π̃0,T
P,t−1 + (1 − π̃0,T

P,t−1) · π1,T
P,t−1,

where the probability of being tested because of (non-infectious) contacts that occurred in the previous period,

π1,T
P,t−1, will be defined later.4

D.3 Active A-Links

We now turn to the A-links. It is first important to realize that A-links can also become inactive because the

asymptomatic person on the other end of the link recovers or develops symptoms at the end of the previous period.

An additional complication is that whether the Type-A, or Type-T, or Type-S individual is traceable at time t− 1

affects the probability that the A-link will remain active in period t.

If the Type-A, Type-T, or Type-S subject is not traceable in period t− 1, then no asymptomatic individual

they met in period t− 1 turned symptomatic in that period. Hence, the probability that the link will remain active

in the next period is (1 − πR)
(
1 − πAt−1,P

)
. Thus, the probability that kt−1 A-links out of kt−1 total links is

3Type-A agents are, by definition, untested asymptomatic in period t. Consequently, the subject they infected
in period t− 1 cannot be traced via their interaction with the Type-A agent. However, the subject can be traced
via other non-infectious interactions they entertained in period t− 1 with other asymptomatic subjects.

4We know for sure that these contacts at time t− 2 were not infectious because we are conditioning on an
agent being infected by the Type-A agent in period t− 1.
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given by the following binomial distribution:5

gi,At−1(kt−1|kt−1, Aj = 1) = B
(
kt−1, kt−1, (1 − πR)(1 − πAt−1,P )

)
i ∈ {A, T, S}, (D.10)

where Aj = 1 means that the Type-A subject is non-traceable at time t− 1. Note that this probability is the same

across the three types of agents considered (Type-A, Type-T, or Type-S), which are denoted by i.

If the Type-A, Type-T, or Type-S subject is traceable in period t − 1, then at least one of their A-

links must have turned symptomatic in that period. Furthermore, other asymptomatic subjects might have

also become symptomatic and hence the probability that the link will remain active in the next period is

(1 − πIS − πR)
(
1 − πAt−1,P

)
. All told, the probability that kt−1 A-links out of kt−1 total links is given by the

following binomial distribution

gi,At−1(kt−1|kt−1, Aj = 2) = B
(
kt−1, kt−1 − 1, (1 − πIS − πR)(1 − πAt−1,P )

)
i ∈ {A, T, S}. (D.11)

As before, this probability is the same across the three types of agents considered (Type-A, Type-T, or Type-S),

which are denoted by i.

Then we combine the two distributions using the weight for the agents that are not traced in period t− 1

gi,At−1(kt−1|kt−1) = ιit−1(k) · g̃i,At−1(kt−1|kt−1) + (1 − ιit−1(k)) · ĝi,At−1(kt−1|kt−1), (D.12)

where i ∈ {A, T, S} and ιit−1(k) denotes the weights, which of course depends on the number of total contacts,

k, the agent who met with the untested asymptomatic subject has entertained as well as the type (A,T, or S) of

agent.

Note that the probability of being traced in period t for a susceptible subject via their contacts made in

the same period is πS,0C,t−1(k) ≡ 1 − (1 − πIS)k. So, by the law of large numbers, the share for non-traceable

susceptible agents is as follows:

ιSt−1(k) = (1 − πIS)k. (D.13)

The share of non-traceable A-type and T-type subjects can be derived analogously. However, we need to

adjust for the possibility that those traced A-type and T-type agents do not test positive at the end of period

t− 1. In this case, they would no longer been untested asymptomatic in period t and hence they will no longer

be considered A-type or T-type agents. The share of non-traceable A-type subjects is therefore given by the

following

ιit−1(k) = (1 − πIS)k

(1 − πIS)k + [1 − (1 − πIS)k]
(

1 − π0
t−1,T (1 − πF )

) , i ∈ {A, T}. (D.14)

5Since the subjects that met the Type-A subject are already untested asymptomatic, they cannot be infected by
the Type-A agent. Thus, her probability of being tested in period t− 1 is just the average probability of being
tested for an untested asymptomatic, πAt−1,P .
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This adjustment relies on the probability of testing positive conditional on being traced (π0
t−1,T (1 − πF )).

At last, we take the step made in equation (D.4) and obtain the marginalized probability distribution of active

A-links for the three types: gi,At−1(kt−1) for i ∈ {A, T, S}.

D.4 Comprehensive Technology: Exposed in the Previous Period

The measure of the subjects who, in period t− 1, were exposed to the newly symptomatic individuals is defined

below:

E1
t =(1 − π0,A

C,t )
[
IAt−1 (1 − πIS − πR)

(
1 − πAP,t−1

)
IAt

π1,A
C,t +

Tt−1
(
1 − πTP,t−1

)
IAt

π1,T
C,t

]
(1 − πIS)IAt

(D.15)

+ (1 − π0,S
C,t )π

1,S
C,tSt + (1 − π0,R

C,t )
[
RAt−1
RAt

π1,R
C,t +

πRI
A
t−1

RAt
π1,RA
C,t

]
RAt ,

where πR,1C,t is the probability to be traced for a Type-R agent, which is defined as an agent who became unobserved

recovered in period t− 1 or earlier. πRA,1C,t is the probability to be traced for a Type-RA agent, which is defined

as an agent who became an unobserved recovered agent in period t and hence was an asymptomatic agent in

t − 1. This equation takes into account that the agents of a group may have different histories of interactions

due to changes in their health status. For instance, there is a difference for untested asymptomatic agents who

became newly infected in the previous period and the ones who already were infected in the previous period. This

is captured by the two terms in the first square bracket of equation (D.15).

The derivation π1,R
C,t for the Type-R agent is the same as for the Type-S agents πS,1C,t with one difference.

The contacts with untested asymptomatic agents in period t− 1 do not need to be adjusted in contrast to Type

S-Agents because the Type-R agent cannot change their health status. This implies that the adjustment in equation

(4.33) is not needed and, thereby, fR,At−1 (k) = fA,At−1 .

The derivation π1,RA
C,t for a Type-RA agent is exactly the same as for a Type-A agent with two exceptions.

First, the Type-RA agent recovers and becomes an unobserved recovered agent independent of getting tested.

For this reason, we can skip the time adjustment in equation (D.1) so that fRA,At−1|t (k) = fA,At−1 . Second, the

share of non-traceable subjects does not depend on the probability of getting tested. Replacing equation (D.14)

with ιRAt−1 = (1 − πIS)k captures this difference. The remaining steps are the same as both types have been

asymptomatic agents in the previous period.

Finally, the probability to be traced for susceptible agents due to previous period contacts is the same regardless

of whether they get infected in period t. Hence this probability is equal to the probability for an S-type agent to

be traced, which is denoted by π1,S
C,t .
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D.5 Random Testing

An alternative to a contacting tracing strategy would be to test the population randomly, a strategy that has been

also actively discussed. In this strategy, the probability of getting tested is the same for the susceptible, untested

asymptomatic, and unobserved recovered agents. As before, we assume that agents that are either infected,

tested-positive or observed recovered. This can be interpreted as an extreme case of contact tracing, in which

every agent gets traced, which can be written is

πiC,t = 1, i ∈ {A,S, T,RU}. (D.16)

As every agents get traced, the number of subjects to be tested is very large. The pool of agents that the

government tests is given as

Et = St +At +RUt . (D.17)

The government has the amount of tests Υt available. Therefore, the probability of getting tested conditionally on

being traced depends on the amount of tests Υt relative to the pool Et:

πiP,t = min
(

1, Υt

Et

)
, i ∈ {A, T}. (D.18)

We can plug equations (D.16) and (D.18) into equation (4.21) to evaluate the probability of testing positive

for newly infected subjects, πTP,t, and subjects infected in earlier periods, πAP,t.

D.6 Model Solution

Solution Algorithm The solution algorithm solves the model iteratively based on a numerical root finder

relying on perfect foresight expecations. It computes the sequence of policy functions {nRt , nISt , nPt , n
RO
t }Tt=1

for T = 250 weeks for a given sequence of taxes {µc,t}Tt=1 and given initial asymptomatic and symptomatic

infected agents: {IA1 , IS1 }. The algorithm is summarized below:

1. Solve the model for the pre-pandemic economy.

2. Guess a path for the sequence of labor {nRt , nISt , nPt , n
RO
t }Tt=1.

3. Based on the guessed path, solve for consumption, labor, the marginal utilities and intraperiod util-

ity of the susceptible, infected symptomatic, tested-positive, and observed recovered agents, that is

{cit, λit, uit}Tt=1, i ∈ {S, IS, P,OR} and the lump sum transfer from consumption taxes {ΓLt }Tt=1.6

4. Calculate the interactions of agents (e.g. for susceptible agents ft(k)) based on their consumption and

labor decisions. This allows us to calculate the probability of getting infected τt (for details see paragraph

6To be precise, the marginal utility of susceptibles is actually calculated later in step 6 as it depends on the
testing probabilities.
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below) and also the probabilities of getting tested for newly infected πTc,t and untested asymptomatic

agents πAc,t. Crucially, the latter objects depends on the tracing technology and the testing capacity.

In case of the comprehensive tracing technology, the amount of active links from the previous period

(e.g for susceptible agents with T-type agents gS,Tt−1(k)) need to be calculated. Based on these objects,

the evolvement of the different groups can be computed by forward iteration so that the sequences

{St, Tt, IAt , Pt, ISt , RUt , ROt , Dt, Popt}Tt=1 are obtained.

5. Iterate backwards to solve the utility of the different agents, that is {V St , V At , V URt , V Pt , V
IS
t , V ORt }Tt=1.

6. Calculate the marginal utility of consumption for a susceptible λst based on the utilities of the different

groups, the probability to get infected, and the probability to get tested.

7. To solve for the sequences pf {nRt , nISt , nPt , n
RO
t }Tt=1, use a numerical root finder that minimizes the

error in budget constraint for the positive-tested and infected symptomatic agents, the government budget

constraint for the lockdown taxes, and the first order condition with respect to labor of susceptibles in each

period t.

8. Update the path for the sequence of labor slowly and repeat steps 3 - 7 until convergence of

{nRt , nISt , nPt , n
RO
t }Tt=1.

D.7 The Individual Risk of Getting Infected

The probability of getting infected τt as a function of consumption and labor decisions enters the decision problem

of the susceptible, untested asymptomatic, and unobserved recovered agents. See Section 4.2.2. This probability,

which is defined in equation (4.5), depends on the non-differentiable functions φc(cst ) and φn(nst ) and introduces

ridges and cliffs in the value function V st of the agents, making the solution to the optimization problem very

challenging. To improve the speed and the reliability of the solution algorithm, it is convenient to take the

following two steps.

First, we linearly approximate the probability of getting infected conditional on a susceptible individual

entertaining k interactions around the average number of interactions at steady state (k̄c, k̄n, k̄o) and obtain

p = 1 − (1 − τ)kc+kn+ko

≈ − ln (1 − τ) (1 − τ)k̄c+k̄n+k̄o︸ ︷︷ ︸
Ξ

· (kc + kn + ko) (D.19)

Note that Ξ is just a constant that depends on parameters and the average number of trials k̄ is implied by the

calibration of the structural parameters of the model.

We then characterize the expected probability for a susceptible individual to get infected conditional on

consuming cst and working nst as before using the joint distribution defined in equation (4.4) and, after some
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straightforward manipulations, we use the definition of mean of a binomial distribution to obtain

τt =
φC(cst )∑
kc=0

φN (nst )∑
kn=0

φO∑
ko=0

Ξ · (kc + kn + ko) fc,t(kc) · fn,t(kn) · fo,t(ko),

= Ξ
[
φc(cst )

(
CAt
Ct

)
+ φn(nst )

(
NA
t

Nt

)
+ φO

(
At
Popt

)]
(D.20)

Second, we consider a linear approximation of the functions φc(cst ) ≈ φc ·cst and φn(nst ) ≈ φn ·nst . Plugging

these linear functions into equation (D.20) leads to equation (4.6).

D.8 Additional Figures
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Figure D.1 Comparison of different testing strategies with unconstrained number of tests for contact tracing: No testing (blue
solid), basic tracing (red dashed) corresponds to current week contact tracing, comprehensive tracing (green dash-dotted)
corresponds to current and previous week contact tracing and random testing (black dotted) has tests available for 20% of the
entire population each week.
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Figure D.2 Comparison of different testing strategies with unconstrained number of tests for contact tracing: No testing (blue
solid), basic tracing (red dashed) corresponds to current week contact tracing, comprehensive tracing (green dash-dotted)
corresponds to current and previous week contact tracing and random testing (black dotted) has tests available for 20% of the
entire population each week. The graphs capture different statistics related to testing.
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Figure D.3 Comparison of different testing strategies with limited tests: Comprehensive tracing (blue solid line) is previous
and current week tracing, basic tracing (red dashed line) is current week tracing and in the green dash-dotted basic tracing is
combined with a 1 year lockdown.
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Figure D.4 Comparison of different testing strategies with limited tests: Comprehensive tracing (blue solid line) is previous
and current week tracing, basic tracing (red dashed line) is current week tracing and in the green dashed-dotted basic tracing is
combined with a 1 year lockdown. In the first plot, the yellow starred line shows the testing capacity Υt.
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Figure D.5 Comparison of different testing strategies under varying lockdown stringency imposed for the first 52 weeks.
Welfare in week 1, accumulated deaths, aggregate consumption, and aggregate labor averaged over the 250 week horizon are
reported.
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Figure D.7 Probability distributions for an agent who does not know their health status to meet with untested asymptomatic
subjects k times. The left plot graphs the distribution ft(k) defined in equation (4.22) and concerns susceptible agents, who
do not turn out to become infected in the period, untested asymptomatic agents, and unobserved recovered agents. The right
plot graphs the distribution fT

t (k) obtained by applying the Bayes theorem as shown in equation (4.24) and concerns the
newly infected agents. The distributions are obtained in period 20 (blue bars) and 40 (white bars) of the simulation in which
we assume basic tracing technology and unlimited testing capacity (Section 4.5.1).
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