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Abstract

This paper studies the analytical properties of the reinforcement learning model pro-
posed in Erev and Roth (1998), also termed cumulative reinforcement learning in
Laslier et al. (2001). The stochastic model of learning accounts for two main ele-
ments: the Law of Effect (positive reinforcement of actions that perform well) and
the Power Law of Practice (learning curves tend to be steeper initially).

The paper establishes a relation between the learning process and the underlying
deterministic replicator equation. The main results show that if the solution trajecto-
ries of the latter converge sufficiently fast, then the probability that all the realizations
of the learning process over a given spell of time, possibly infinite, becomes arbitrarily
close to one, from some time on. In particular, the paper shows that the property of
fast convergence is always satisfied in proximity of a strict Nash equilibrium.

The results also provide an explicit estimate of the approximation error that could
prove to be useful in empirical analysis.

JEL: C72, C92, D83.



1 Introduction

Over the last decade there has been a growing body of research within the field of ex-
perimental economics aimed at analyzing learning in games. Various learning models
have been fitted to the data generated by experiments with the aim of providing a
learning based foundation to classical notions of equilibrium. The family of stochastic
learning theories known as positive reinforcement seem to perform particularly well in
explaining observed behaviour in a variety of interactive settings. Although specific
models differ, the underlying idea of these theories is that actions that performed
well in the recent past will tend to be adopted with higher probability by individuals
who repeatedly face the same interactive environment. Despite their wide applica-
tions, however, little is known on the analytical properties of this class of learning
models. Consider for example a normal form game that admits a strict Nash equi-
librium. Suppose players have almost learned to play that equilibrium, meaning that
the stochastic learning process is started in a neighbourhood of it. Since, for each
player, any action different from the equilibrium action will necessarily lead to lower
payoffs, one would expect players to consistently reinforce their choice of the equi-
librium action and, by this doing, to eventually learn to play that Nash equilibrium.
This seems to be a basic requirement for a learning theory. Yet, it is not satisfied by
some reinforcement learning models (e.g. the Cross model as studied in B\ "orgers
and Sarin (1997)), and most results available to date can only guarantee that in some
reinforcement learning models, it may (e.g. the Erev and Roth model analyzed in
Hopkins (2002), Beggs (2005) and Laslier et al. (2001)).

This paper studies the stochastic reinforcement learning model introduced by Roth
and Erev (1995) and Erev and Roth (1998), also termed cumulative proportional
reinforcement in Laslier et al. (2001). In the model, there is a finite number of
players who are to repeatedly play a normal form game with strictly positive payoffs.
At each round of play, players choose actions probabilistically, in a way that accounts
for two main features. The first effect (labelled the Law of Effect) is the positive
reinforcement of the probability of choosing actions that have been played in the

previous round of play, as a function of the payoff they led to. The second effect



(labelled the Power Law of Practice) is that the magnitude of this reinforcement is
endogenously decreasing over time. The main results of this paper imply that, if
players start close to a strict Nash equilibrium of the underlying game, from some
time onwards and with probability one, they will learn to play it. While doing so,
players will in fact choose actions in a way that is close to a deterministic replicator
dynamics. The latter dynamics have been studied extensively in biology, as well as
in economics, and it is known that all, and only those, strict Nash equilibria are
their stable rest points. Our results exploit the fact that in proximity of a strict
Nash equilibrium, convergence occurs at an exponentially fast rate. If learning has
been going on for some time, the stochastic component of the reinforcement learning
process, which in principle could move the process away from the equilibrium, is in
fact overcome by this deterministic effect.

The results we obtain rely on stochastic approximation techniques (Ljung (1978),
Arthur et al. (1987), (1988), Benaim (1999)) to establish the close connection be-
tween the reinforcement learning process and the underlying deterministic replicator
equation. Specifically the paper shows that up to an error term the behaviour of the
stochastic process is well described by a system of discrete time difference equation
of the replicator type (Lemma 2). The main result of the paper (Theorem 1) shows
that if the trajectories of the underlying system of replicator equations converge suf-
ficiently fast, then the probability that all the realization of the learning process over
a given spell of time, possibly infinite, lie within a given small distance of the solution
path of the replicator dynamics, becomes arbitrarily close to one, from some time on.
In particular, the paper shows that the property of fast convergence, as required in
the main result, is always satisfied in proximity of a strict Nash equilibrium of the
underlying game (Remark 1) and is sufficient to guarantee that the approximation
error converges uniformly over any spell of time.

Based on the primitives of the model, the result also offers an explicit estimate
of the approximation error, say «, i.e. the probability that all the realization of the
learning process are more than ¢ away from the solution trajectory of a replicator

dynamics started with the same initial conditions. Hence, for a given («, ¢), one can



compute an estimate of the number of repetitions, say ng, that are needed in order to
guarantee that with probability at least (1 — ) all the realizations at any step n > ng
lie within e distance from the replicator dynamics. This estimate could prove to be
useful in empirical analysis, as an alternative to the simulation of learning behaviour,
which is typically done on the basis of a law of large numbers and involves averaging
over the realizations of play of thousands of simulated players.

The paper is organized as follows. Section 2 describes the reinforcement learning
model we study. Section 3 introduces the main result of this paper, which is then
stated in Section 4. Since the logic followed in the proof is more general and could
fruitfully be applied to the study of other learning models, an explicit outline is
provided (Detailed proofs are instead contained in the Appendix). Finally, Section 5

contains some concluding remarks.

2 The model

This paper studies the reinforcement learning process introduced by Roth and Erev
(1995), and Erev and Roth (1998), also referred to as cumulative proportional rein-
forcement learning in Laslier et al. (2001).

Consider an N-player, m-action normal form game G = ({i = 1,..., N}; A% 7?),
where A® = {j = 1,...,m} is player i’s action space and 7' : x;A' = A — R is
player i’s payoff function!. Given a strategy profile a = (ay,...,a;,...,ay) € A, we
denote by 7'(a) the payoff to player i when a is played. For a given player i, we
conventionally denote a generic profile of action a as (a;, a_;) where the subscript —i
refers to all players other than i. Hence 7¢(j, a_;) is the payoff to player i when (s)he
chooses action j and all other players play according to a_;. Throughout the paper
we assume that payoffs are non negative and bounded.

We shall think of player i’s behaviour as being characterized by urn ¢, an urn of
infinite capacity containing ~* balls, b; > 0 of which are of colour j € {1,2,...,m}.
Clearly ' = 7, b5 > 0. We denote by z% = b}/" the proportion of colour j balls in

urn . Player ¢ behaves probabilistically in the sense that we take the composition



of urn 7 to determine i’s action choices and postulate that JJ; is the probability with
which player ¢ chooses action j. Behaviour evolves over time in response to payoff
consideration in the following way. Let x;(n) be the probability with which player i
chooses action j at step n = 0,1,2.... Suppose that a(n) = [j,a_;(n)] is the profile
of actions played at step n and 7*(j, a_;(n)) shortened to 7’ (n) is the corresponding
payoff gained by player ¢ who chose action j at step n. Then exactly w;(n) balls of
colour j are added to urn ¢ at step n. At step n + 1 the resulting composition of urn

1, will be: A A ‘
b(n+1)  bi(n) +05(n)

D =0 ) T ) + o)

(1)

where o}(n) = %(n) for k = j (i.e. if action j is chosen at step n) and zero
otherwise, and [ = 1,2,...m. In the terminology of Erev and Roth (1995) the b (-)
are called propensities. Since 7'(n + 1) = 7*(0) + >, >, 0i(r), this learning
process is termed cumulative reinforcement learning in Laslier et al. (2001).

If payoffs are positive and bounded (as will be assumed throughout) the above
new urn composition reflects two facts: first the proportion of balls of colour j (vs.
k # j) increases (vs. decreases) from step n to step n + 1, formalizing a positive (vs.
negative) reinforcement for action j (vs. action k), and second, since +' appears at
the denominator, the strength of the aforementioned reinforcement is decreasing in
the total number of balls in urn . We label the first effect as reinforcement and we
refer to the second as the law of practice.

To better understand the microfoundation of this learning model, it is instructive

to rewrite (1) for j being the action chosen at step n and by recalling that bé(n) =

)

z(n)v'(n), as:
i = 2'(n — W;(n W;(”)
sy = a0 |1 | ?
rp(n+1) = aj(n) [1 - Vz(nﬂjinﬁl (n)] for & #3

This shows that conditional upon a(n) being played at step n, player i updates her

state by taking a weighted average of her old state and a unit vector that puts mass



one on action j, where step n weights depend positively on step n realized payoff and
negatively on step n total number of balls contained in urn 72.

Given an initial condition, [y(0),x(0)], for any n > 0, the above choice proba-
bilities define a stochastic process over the state space [z(n),v(n)], described by the
following system of N(m + 1) stochastic difference equations:

. ) [0l (n)—zi(n) >, oi(n)]
zh(n+ 1) = 2} (n) + Sk sll
k( ) k< ) 7' (n+1) = 1,...,N k= 17--'aM (3)

(1) = 5 () + i)
Clearly vy = [y'] € RY and 2’ = [z3] € Ay ={z' € NP : X 2) =1}, z € A =

x;A;, i.e. x lies in the Cartesian product of the N unit simplexes A;. It can be

easily checked that, conditional upon a realization of a(n) the system of equations
(3) reproduces exactly the system of equations (2). Note that, by construction, the
process is Markovian in the state variables [z(n),7(n)] (and time inhomogeneous,
since y(n) depends on n).

Let 3{n} denote the sigma algebra generated by{x(l);y(l) I = 1,...,n}. Consider
the term in square brackets in equation (3) and compute its expected value conditional
on I{n}. It is not difficult to see that Efo}(n) | S{n}] = z}(n) >°,  7'(k,a_;)z,_ (n)
i.e. it is the expected payoff to player i from playing action k at step n, when all
other players are choosing each profile a_; with probability %,i(”)- Since analogous

reasoning applies to Y, o}(n), one gets:

El[o(n) — 2z (n Zgl S{n}] =
n)[Zwi(kJ,a,i) Zﬂ' ai,a_;)x! (nf}t)

where the term of the RHS of this equation defines a (discrete time) system of
deterministic replicator dynamics. Its continuous time version f(z”) : A — A defined

by 42P(t) = f(zP(t)) where, for i =1,...,N andk=1,..,m

) = ZZW (k,a_; ZW iy G_;) (5)

is a direct generalization of the Taylor (1979) multipopulation replicator dynamics.

It has been extensively studied in the literature on evolution, usually in the contest
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of large population and random matching models (see for ex. Fudenberg and Levine
(1998), Ch. 3, Weibull (1996), Ch. 3 and therein references) and has been applied
to the study of learning models by Bérgers and Sarin (1997)), Posch (1997), Ianni
(2002), Hopkins (2002), Vega-Redondo (2003), among others.

This relation is what motivates the study of the dynamic properties of the rein-
forcement learning process (3) by using known properties of the replicator dynamics
(5). In fact, if the step sizes of the reinforcement process, v'(n + 1)~! in (3), were
deterministic and equal for all players, for example by a renormalization of the to-
tal number of balls in each urn to n that leaves proportions x(n) unaffected, then
by arguments that are now standard in the literature on stochastic approximation of
Robbins-Monro algorithms, and since replicator dynamics are bounded and Lipschitz-
continuous, the N(m + 1) system (3) could be approximated by the following Nm

system:

si(n+1) = zi(n) + %f,ﬁ(m(n)) + %ﬁi(n) + O(%) fori=1,. Nandk=1,..m

where E[¢'(n) | I{n}] = 0 and O(n~2) is a term of the same infinitesimal order of
(n~2). This renormalization has been used for example in Arthur (1993), Posh (1997).

In the reinforcement learning model we study in this paper gains decrease en-
dogenously, since the relative effect of payoffs from the interaction on action choices
becomes smaller as players gain more experience in the learning routine. Since pay-
offs are random, so are the updated weights given to payoffs experienced at any
given point in time. Furthermore, since different players may get different streams of
payoffs over time, each player’s learning process may display a different sequence of
decreasing gains. However, as we show below, in proximity of an equilibrium towards
which the solution trajectories of the replicator dynamics converge sufficiently fast,
any renormalization to a common scale would do. In fact, since the property of fast
convergence is shown to hold in a neighbourhood of any strict Nash equilibrium, we
are able to show that, if the learning process is started in its proximity, the probabil-
ity that any of its realization lie within a small distance from the solution path of the
replicator dynamics, over a possibly infinite spell of time, becomes arbitrarily close

to one, from some time on. Hence the paper sheds some light on the asymptotics of
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the reinforcement learning process, as well as on its evolution over time.

3 An overview

Before proceeding to state the main result of this paper, we find it useful to place it in
the contest of results already available in the literature on stochastic approximation
that have found application to the study of learning dynamics.

First, the results of Arthur et al. (1988) (Theorem 2) applied to our setting
guarantee that the learning process converges almost surely to a random vector with
3

support given by the set of rest points of the replicator dynamics”, i.e. the set:

Drp=A{z e Al f(x) =0}

whenever this consists of isolated points. As it is well known, this set typically
includes all the Nash equilibria of the underlying game, as well as all the vertices of
the simplex A and all the points that are Nash equilibria only with respect to the
strategies in their support. Results on ‘unattainability’ (i.e. convergence with zero
probability to a given rest point) within this literature (Arthur et al. (1988), Pemantle
(1990)) apply only to interior solutions, and are not of straightforward extension to
the boundaries of the simplex A (see Hopkins and Posch (2005) for a clarification).

Sufficient conditions that guarantee that the process does not oscillate between
different isolated rest points in Dy typically require the existence of a Ljapunov func-
tion for the system (5). Theorem 1 of Ljung (1978) or Corollary 6.6 of Benaim (1999)
provide convergence conditions, that do straightforwardly apply to our setting when-
ever a Ljapunov function can be identified. Hence, convergence of the reinforcement
learning process obtains for wide classes of underlying games (see Hofbauer and Sig-
mund (1988) and Weibull (1995) among others on the study of Ljapunov convergence
for some classes of games).

Theorem 2 of Ljung (1978) details conditions under which the process converges



with probability one to the subset of stable rest points, i.e. the set:

Ds = {x € A| f(z) =0 and the Jacobian D f(x) has

only eigenvalues with non-positive real part}

This set is particularly important in the study of the properties of the reinforce-
ment learning model when applied to an interactive setting, since it consists of all,
and only those, strict Nash equilibria of the underlying game. Unfortunately, the
result of Ljung (1978) is not easily applicable to our reinforcement learning model (in
particular condition D1 cannot be easily checked).

Benveniste et al (1990) also provide a number of interesting results in the theory
of stochastic approximation of adaptive algorithms. Although the results we obtain
are in line with those of Theorem 14 , Ch. 1, Part 2 of the quoted book, the under-
lying assumptions are different (in their setup, there is a unique globally stable rest
point and the gain sequence, v(.)~!, is deterministic and, by assumption, has locally
bounded moments).

The types of results available in the literature emphasize the fact that the deter-
ministic replicator dynamics act as a driving force for the stochastic reinforcement
learning process, in that it describes its expected motion. How far this relation can be
used to understand the asymptotics of the learning process is however, not obvious.
The best we can do is in fact to approximate the dynamics of the learning process
by replicator dynamics over compact time intervals. This is exactly what is done in
Laslier et al (2001), Lemma 1, where, using terminology and results from Benaim
(1999), it is shown that the replicator dynamics is an asymptotic-pseudo-trajectory
of the learning process. Results of this type are useful in understanding the asymp-
totics of the reinforcement learning process, since they allow to show that Theorem
7.3 in Benaim (1999) applies and that the probability that the reinforcement learn-
ing process gets absorbed in an asymptotically stable Nash Equilibrium is strictly
positive. However, to address general properties of convergence to Nash equilibria
of reinforcement learning models, one needs to rule out convergence to all the other

rest points of the replicator dynamics. While convergence to (linearly) unstable rest



points can be ruled out, for example, on the basis of Theorem 5.1. of Benaim and
Hirsh (1999), convergence to boundary rest points that are Nash equilibria only with
respect to strategies in their support, need also to be ruled out (see Hopkins and
Posch (2005) for more on this issue). As it will become clear below, the main result
of this paper exploits an additional stability property of strict Nash equilibria under
replicator dynamics. By this doing, it improves upon the type of results available in
the literature by showing that if the process is started in proximity of a strict Nash
equilibrium, convergence will obtain with probability arbitrarily close to one.

Before stating the main result of this paper, we remark on two ingredients that are
key to its proof. The first refers to the definition of a suitable time scale upon which
we construct our numerical estimate of the probability that the learning process is
well approximated (in a sense to be made precise later) by a solution trajectory of
the replicator dynamics. The second involves the notion of stability of the solution
trajectories of the replicator dynamics.

One way to address this issue of different random step sizes of the reinforcement
learning process (3) is the one followed by Hopkins (2002), where the author intro-
duces N new variables p(n) = n='4%(n) to re-write the dynamics as a process with
a constant (hence common) step size, equal to n~!. This leads to an N(m + 1) sys-
tem analog to (3) in the new state variables [z(n), u(n)]. It turns out that having a
common deterministic time scale is not a necessary requirement for the decomposi-
tion of the expected motion of the process (3) in a deterministic part, f(z(.)), which
denotes system (5), weighted by random sequences +(.)~!, plus an error term, that
is uniformly bounded. Lemma 2 in the Appendix shows that, under the assumption
that payoffs are positive and bounded, the stochastic learning process (3) can still be

written as:

. ) 1 . .
zi(n+1) =z3(n) + Wf,i(x(n)) +ep(n)fori=1,...,Nand k=1,....m
where £(n) is proved! to be a.s. O(n™?).
As a result, the fact that in a reinforcement learning model the step sizes are
random, does not prevent the application of the techniques of stochastic approxima-

tion, in that they do not alter the order of magnitude of the error term. If, however,
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numerical bounds are to be provided, we need to fix a time scale that is common to
all players®. For the reasons hinted at before, and summarized in Remark 3 after the
proof of Lemma 2 in the Appendix, any sequence {g(n),n > 0} is such that g(n) > 0,
>, g(n)™t = o0 and Y, g(n)"? < oo would satisfy the necessary conditions. We
shall take g(n) = y(n) +nx with 7(n)= inf; 7(0) where, we recall, 7°(0) is the initial
number of balls in player i’s urn and 7 is the minimum payoff achievable in the game.
We obtain this by simply re-adjusting each urn composition, b (n) to b?(n) in such a
way as to ensure that i (n) = b(n)y(n)~' = bi (n)g(n) *or all i = 1,....N and for
all k =1,......,m. The dynamics is hence defined by:

wi(n +1) = zj(n) + S5 file(n)) + €4 (n)
{9(n)}

Second, we shall use the notion of exponential stability as applied to our non linear

i=1,.,N k=1,..,m (6)

time varying system. We say that an equilibrium z = 0 is exponentially stable for
LaP(t) = f(xP(t)) if there exists positive constants, ¢, k and v, independent of the
initial condition ¢y, such that | z(t) |< k | z(to) | exp[—7(t —to)] for all ¢ > ¢, > 0 and
for all | z(#) |< c. It can be shown that this requirement is equivalent to asymptotic
stability of the solution, holding uniformly with respect to the initial condition®.
Exponential stability is what will allow us to extend the approximation result
on the infinite interval. To see this, consider any two solution trajectories of the
replicator dynamics, labelled as y(t) and z(t), with initial conditions y(to) and z(t)
respectively. Since the replicator dynamics are Lipschitz-continuous, the application

of the Gronwall-Bellman inequality provides the following upper bound to the time ¢

distance between the two trajectories:

[ (8) — 2(0) 1< y(to) — =(t0) | explL(t — fo)] + T {explL(t )] ~ 1}

where 0 > 0 and L is the Lipschitz constant. This bound is valid only on compact
time intervals, since the exponential term grows unbounded for ¢ — oo. If, however,
the solutions are exponentially stable, then (see for example Khalil (1996), Chapter

5) such bound can be expressed as:
| y(t) — 2(t) |<[ y(to) — 2(to) | kexp[=y(t = to)] +

10



where k,~ and 3 are positive constants. This bound is clearly valid also on infinite
time intervals, and this is key to our proof.
In the next Section we shall state the main result of this paper and outline the

logic of its construction.

4 The main result

As described below, our result relates the trajectories of the system of replicator
dynamics (5) to the asymptotic paths of the reinforcement learning model defined by
(3). By doing this, we are able to show that, provided the process is started within
the basin of attraction of an asymptotically stable rest point the probability with
which such a rest point is reached can be made arbitrarily close to one.

Let I ={n; |l > 0} be a collection of indices such that 0 < ng < n; < .... < <
eoe. . Let x(ng),z(nq),....x(ny), .... denote the realizations of the stochastic process
(3) at steps ng, M1, «oovey Ny e . Consider the renormalized process defined by (6) and
introduce the following fictitious time scale: let ¢; = nil g(k)™' and At; = t;,1 — ;.

k=ng

Consider the collection of points {(z(n;),t;) | n; € I}. Suppose also that the solution
of the system of differential equations (5), started at time ¢, with initial condition
equal to xz(ng) is plotted against the same time scale.

The main result of this paper estimates the probability that all points z(n;) for
n; € I simultaneously are within a given distance € from the trajectory of the solution
of the system of differential equations. In words, Theorem 1 shows that, if and when-
ever, the solutions of the system of differential equations (5) converge sufficiently fast,
there exists constants £, n that depend on the payoffs of the game, such that, fore < &
and ng > 7, the probability that all realizations of the process in I simultaneously lie

in an e-band of the trajectory of the ODE, becomes arbitrarily large, after time 7.

Theorem 1 Consider the stochastic learning process defined by system (6)). Suppose
payoffs of the underlying game are bounded and strictly positive. Let the system of

11



ODE (5) denote a system of deterministic replicator dynamics and xP(t,to, z) denote
any time t > 0 solution, when the initial condition is taken to be x at time ty. Suppose

that the following property holds over a compact set D C A:
|2P(t+ At t,x + Az) — 2P (t + At t,2)| < (1 — AAL) [Az] (7)

with 0 < A < 1 and |.| denoting the Euclidean norm.
Then, for all x(ng) € D, there exists constants C,g, T that depend on the game,

such that, for e <& and ng > n:

1
9(j)?

C
)

J

<

(8)

Pr |sup |x(nl) - xD(tnl,tno,x(ng)‘ > €
ni el

™

N

forn; € I ={ng,nq,...... N}, where N = sup; ny.

The above Theorem shows that the learning process stays close to the correspond-
ing trajectory of the replicator dynamics with higher probability as n, increases, for
a given €. The intuition behind the result is that the common gain sequence g(.)™*
of the process can be rescaled in such a way as to guarantee that the process z(.)
stays close to #”(.) with an arbitrary high degree of precision.

An important thing to notice is that, since the RHS of inequality (8) is square
summable, the statement holds for any N, possibly infinite. This amount to saying
that, under the assumptions of the Theorem, the reinforcement learning process is
stochastically approximated, to an arbitrarily high degree of precision, by a replica-
tor dynamics over any interval of the form [t, +o0o[’. The fact that the approxima-
tion holds uniformly over a possibly infinite spell of time has significant implication
for the characterization of the asymptotic behaviour of the reinforcement learning
process: while being an a.s. asymptotic-pseudo-trajectory of the reinforcement learn-
ing process guarantees that the probability of the reinforcement learning process gets
absorbed in a linearly stable Nash equilibrium is strictly positive, being a limit tra-
jectory, guarantees that such probability converges uniformly to one.

Next, condition (7) is shown to hold for any strict Nash equilibrium of the under-

lying game:

12



Remark 1 Let z* be a strict Nash equilibrium of G and denote its basin of attraction
by:

Bz*)={zr e A| tlim 2P (t,tg, x) = 2*}
Then there exist an open set B, = {x € A | |x — z*| < r} C B(x*) such that condition
(7) stated in Theorem 1 holds in B,.

A straightforward implication of the above Remark is that if the stochastic process
is started in a suitably defined neighbourhood of a strict Nash equilibrium, then the
probability with which the process converges to that Nash equilibrium can be made

arbitrarily close to one.

Remark 2 Let x* be a strict Nash equilibrium of G and suppose x(ng) € B,., defined
in Remark 1. Then
lim Prz(n) =2 =1

n—oo

Proof For N = cc in inequality (8) reads:

1
Pr {Sup ‘x n —xD(tm,tnoaﬂU(no)‘ < 5} >1-= Z 9(j)?
€ g\Jj

n el j=no
Hence:
D . CE 1
lim Pr sup‘ x(ny) —x (tnl,tno,x(n0)| <gl>1- lim — — =1
el i no—oo £2 £ g(j)
J=no
|

Since convergence occurs uniformly, the upper bound of which in Theorem 8 could
prove to be useful to practically control the approximation error. To this aim, let
a = Pr[sup,,c; |2(m) — 2P (tn,, tny, 2(no)| > €], i.e. the probability that the learning
process is more than ¢ distant from the solution trajectory of the replicator dynamics,
both processes started with the same initial condition. The bound in (8) can then be
read to provide a lower bound for the number of steps the learning process needs to

go through in order to guarantee that, with probability at least «, the approximation

c* X

error is less than e:
2

5 = 7 9)

13



The first inequality in (9) guarantees that the bound is operative, meaning that the
value on the RHS of inequality (8) is less than one; the second is a direct application

of Theorem 8. Notice that:

Jj=no

where Psi(.,.) is a Polygamma function, which takes strictly positive values, it is
continuous and it is strictly decreasing in ng+ v(0)x~!. Hence the error can be

controlled by ng and / or by @ As detailed in the proof of Theorem 8 in the
Appendix, the constant C' is a function of A (a measure of the speed at which learning
takes place, which is to be computed from the payoffs of the underlying game), of L
(the Lipschitz constant, which can be taken to be one, without loss of generality), of
N (the number of players in the game), of M (the number of actions available) and
of T (the maximum payoff achievable)®.

Since the logic followed in the proof of Theorem 1 is quite general, we conclude
this Section by sketching its outline.

The main result relies on a series of Lemmas.

As already mentioned, Lemma 2 shows that, whenever payoffs are positive and
bounded, the motion of the stochastic system x?(n) is driven by the deterministic
system of fi(x(n)), rescaled by a random sequence v'(n)~!, up to a convergent error
term. The key to the proof of convergence is the coupling of the error term with the
sum of a supermartingale and a quadratically integrable martingale. Lemma 2 allows

us to re-write the process as:

j(n)—1 J(n)—1
F () =)+ > ﬁfﬁ'(a:(sm S eis)

for j(n) > n+1, where the last term can be made arbitrarily small by an appropriate
choice of n, since it is the difference between two converging martingales.

Lemma 3 then proceeds to show that if the process is, at step n of its dynamics,
within a small p-neighbourhood of some value x, then it will remain within a p-
neighbourhood of x for some time after n. As such, Lemma 3 provides information

about the local behaviour of the stochastic process x(.) around z’, by characterizing
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an upper bound to the spell of re-scaled time within which the process stays in a
neighbourhood of 2.

The intuition used to derive global results runs as follows. Suppose time t re-
alization of the process, x’, belongs to some interval A. Within a time interval At
two factors determine the subsequent values of the process: a) the deterministic part
of the dynamics, i.e. the functions f(z(t)) started with f(z(¢)) in A and b) the
noise component. If the trajectories of f(z) converge, then after this time interval,
f(z(t + At)) will be in some interval B C A, for all x that started in A. Hence the
distance between any two such trajectories will decrease over this time interval, the
more S0, the longer is the time interval. According to Lemma 3, the realization of the
stochastic process will differ from the corresponding trajectories by a small quantity,
say +C, the more so, the smaller is the time interval. Hence the stochastic process
will not diverge from its deterministic counterpart if B + 2C < A. In order for this
to hold, the time interval At needs to be large enough to let the trajectories of the
deterministic part converge sufficiently, but small enough to limit the noise effect.
To this aim, Lemma 4 shows that if the realization of our process x(.) lies within &
distance from the corresponding trajectory of z”(.) at time n;, then this will also be
true at time n;yq, provided ¢ is small enough to guarantee that At is

a) big enough for any two trajectories of 2”(.) to converge sufficiently, and

b) small enough to limit second order effects and the effects of the noise.

To conclude the proof of Theorem 1 it is then sufficient to estimate the probability

that Lemma 3 holds simultaneously for all n;.

5 Conclusions

This paper studies the analytical properties of a reinforcement learning model that
incorporates the Law of Effect (positive reinforcement of actions that perform well),
as well as the Law of Practice (the magnitude of the reinforcement effect decays over
repetitions of the game). The learning process models interaction, among a finite set

of players faced with a normal form game, that takes place repeatedly over time. The

15



main contribution of this paper is the full characterization of the asymptotic paths
of the learning process in terms of the trajectories of a system of replicator dynamics
applied to the underlying game. Regarding the asymptotics of the process, the paper
shows that if the reinforcement learning model is started in a neighbourhood of a strict
Nash equilibrium, then convergence to that equilibrium takes place with probability
arbitrarily close to one. As for the dynamics of the process, the results show that,
from some time on, any realization of the learning process will be arbitrarily close
to the trajectory of the replicator dynamics started with the same initial condition.
This also provides a practical way to control the approximation error.

The convergence result we obtain relies on two main facts: first by explicitly
modelling the Law of Practice, we are able to construct a fictituous time scale over
which any realization of the process can be studied; second, the observation that
whenever the solution of the system of replicator dynamics converge exponentially
fast, the deterministic part of the process acts as a driving force. Both requirements
are shown to be essential to establish the result.

We conclude with two further remarks. First, since the methodology we used
is not peculiar to the reinforcement learning model analyzed in this paper, it could
be fruitfully applied to the study of different learning models (for example in rela-
tion to the analogies between fictitious play and a perturbed version of reinforcement
learning, identified in Hopkins (2002), or to the study of the Experience Weighted
Attraction model proposed in Camerer et al. (1999)). Second, and more technically,
we conjecture that an alternative sufficient condition to achieve the results we obtain
in this paper could rely on modelled fast convergence properties of the learning algo-
rithm (for example a sequence of weights given by [y(n)]~? for p > 1), rather than on
those of the underlying deterministic dynamics (i.e. the properties of the fPz(n)).
Although conceptually this would amount to considering different learning models,

the results of Benaim (1999) on shadowing do support this conjecture.
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Appendix

Lemma 2 Consider the reinforcement learning model defined by (3) and suppose that
2(0) > 0 component-wise, and for all i’s and for alla € A, 0 < 7w < 7'(a) < T < 00.
Then the following holds:

z(n+1) = 2h(n) + s file(n) +eh(n) 0> 1
0<zi(0)<1 n=0

where:
fila(n)) = i (n ZW (k,a- (n) — Zﬂ-i(aiva—i)$a(n)]
and: -
Pr[ lim Zgﬁg(k‘) =
k=n
foralli=1,.... N andk=1,...m andn > 1.

Proof. The dynamics (3) is defined by:

zi(n+1)=2i(n) + =& (n) n>1

4 74(n) = (10)
0<zi(0) <1 n=>0
forall:z=1,.... N and k =1,...,m, where:
. (n) = [o3(n) — 2}, (n) Y oi(n)] + 5}, (n) (11)
!
with:
i) = 1 >-101(n)
5k(n) = _,Yi(n) - xk Z Ul 14 Zli;‘()n)
v n

We then study the conditional expectation E[®%(n) | S{n}] by looking at the two

additive components separately. Simple algebra shows that:

E[ — ka Z Uk S{n}] =
= aim)Y_w(koa)zl_(n) =D 7iai,a_)al(n)]
fi(z(n))
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Also, since:

>, 0in) o
y < H <
14 2ot = 2_olm) =7
7t (n)
oi(n) — 2 (n) > ai(n) < oh(n) <7

)

it follows that, for all ¢ and for all k:

| 80) 1< s
As a result, we can now write:
zi(n+ 1) = 2i(n) + ﬁfﬁ(x(n)) +ei(n)
where:
f(n) = ——[5L(n) + i (n)]
7i(n)

n(n) = @i(n) — E[®y(n) | {n}]

n—1
E(n) = g(1)
=1
n—1 n—1
1 1
_ LS+ — i)
(1) ;7’(0 :
= Z5(n) + 5, (n)
Note that:
S(n+1) = E5(n) + ——bi(n)
= = vi(n) "
— _ 1
=1+ 1) = Ey(n) + ——ri(n)

and since by construction, (52 is bounded as in eq. (5), it follows that:

2 < Zyn) + 2
- S Ssln -
vi(n)? gi(n)?

E(g(n -+ 1) S Eg(n) +
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where ¢‘(n) = 7%(0) + nx is deterministic.
Hence, we can construct an auxiliary stochastic process:

s+ Y

Z(n) = 2 W

[1]

where the series of which in the second term converges, and show that this is a

supermartingale relative to S{n}. In fact:

ElZn+1) | S{n}]=

IN
[1]
=
2
_|_
3|
[\v]

—_
[\
+
3|
[\v]

By the convergence theorem for supermartingales, there exists a random variable
Z() and, for n — oo, Z(n) converges pointwise to Z(oo) with probability one.
Hence, also Z5(n) converges to Zs(co) with probability one.

With regard to Z,(n), since E[ni(n) | S{n}] = 0, Z,(n) is a quadratically inte-
grable martingale relative to S{n}. Hence (see for ex. Karlin and Taylor (1975), p.
282), there exists a random variable Z,(c0) and Z,(n) — Z,(c0) for n — oo a.s..

Since E(o0) — Z(n) = >.,°,, €k (1), the assert follows. 1

Remark 3 Let Q be a subspace of the sample space of the process {x(n),v(n)} such
that the assumptions of Lemma 2 hold. For a given initial condition [x(0),~(0)], con-
sider a fized realization w* € Q* and the corresponding sequence {x(n,w*),y(n,w*)}.
Any component of the vector y(n,w*) = [y'(n,w*), i = 1,2,...,N], regarded as a

sequence over n, satisfies the following:

1 1 1 1
< <

= 7(0) +n7 ~ Yi(n,w*) T y(0) +nm — g(n)
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where (0) = sup; 7(0) and v(0) = inf; v*(0). Hence:

. 1
11m.—* =0
n—00 fyl(n,w )
= 1
—— =
= V(W)

> 1
2 i <

n=0
Lemma 3 Consider the reinforcement learning model defined by (3) under the as-
sumptions of Lemma 2. Define the number m(n, At) such that

m(n,At)—1 1

B D R

k=n
Assume that, for p = p(z') > 0 and sufficiently small, x(n) € B(a',p) = {z :
|z — 2’| < p}. Then there exists a value Ato(x', p) and a number Ng = No(2', p) such
that, for At < Aty and n > Ny, x(k) € B(x', p) for all n < k < m(n, At).

Proof. By Lemma 2, for j(n) > n + 1, the process can be re-written as:

j(n)—1 Jj(n)—1 j(n)—1
(i) =an) + 3 s hw)+ 3 ﬁ[f(:v@))—f(w')H 3 ()

and an upper bound for z(j(n)) can be constructed as follows.
Since the function f is Lipschitz in x:

j(n)—-1 1 j(n)—1

/ —1'/ L
> Ty M) — @<L max Ja(k) =o' Z )

s=n

j(n)—1
where L is global Lipschitz constant. Hence, by letting At(n,j(n)) = > g(s)™! we

obtain:

2(j ()] < |z(n)| + At(n, j(n)) | f(2') | +

+At(n, j(n)L x| | a(k) —a' [+ (12)
j(n)—1
+ ) els)
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As for the last term, from Lemma 2 we know that, for all a > 0 there exists an

n = n(«a) such that for all n > n(a) with probability one:

j(n)—1

Z e(s)| <«

since these are differences between converging martingales.

Now consider j(n) = m(n, At), where m is such that lim,, ., At(n,m(n, At)) =
At. Note that the number m is finite for any n and for any At < oo, since Y, g(s)™' =
oo and Y g(s)"? < oo by assumption. Denote )Zifrz_l 5(3)‘ by «(n) and suppose
xz(k) € B(2',2p) for all n < k < m(n, At) — 1.

Inequality (12) states that:

[2(m)] < [a(n)| + At | f(a') | +At20L + aln)

Hence:

|z(m) — 2’

IN

|z(m) — z(n)| + |z(n) — 2|
< At|f(a")| + At2Lp + a(n) + p

A

and as a result, we can choose Ny(p) = n(§) such that, for all n > Ny, a(n) < §

and Ato(a', p) = &(| f(2")|+2Lp)~" > 0 and show that, for all At < Atgandn > Ny :

am) = 2| < L+ L+ p=2

Hence if z(k) € B(2',2p) for all n < k < m — 1, this implies that also z(m) €
B(z',2p). By induction it then follows that x(k) remains in B(2’, 2p) also for all k up
to m(n,At) — 1. 1

Lemma 4 Beyond the assumptions of Lemma 3, suppose that the system of ODE (5)
satisfies property (7) on a compact set D C A. Suppose x(n;) € D with probability
one, and zf (1) € D.

Then,

if |28() —2(m)| <e, also |xd(1+1) —a(n )| <e
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for é\—z <A < 32—’\5, where 0 < X\ < 1, L is the Lipschitz constant of f(.) on D, and
0 < e <z =min{y/(6A*)"14pL, (3)\)"12LAt} with Aty = inf,ep pep) Ato(z, p) >0
defined in Lemma 3.

Proof. Let I = {n; | I > 0} be a collection of indices such that 0 < ng <n; < .... <

np—1

m< Nygp1 < oo and let At; = t; 14 —t;, with t; = > g(k)~'. Lemma 2 states that
k=ng

the value of the process at time n;,; is given by:

x(ny1) = x(ng) + Aty f(x(n)) + a(ng)

and Lemma 3 shows that, for A¢; small and n; large, a(n;) < p/2, meaning that
if the process is started at x(n;), it stays close to it for some time.
Solve the system of differential equations (5) from ¢, to ¢, + At; Since f(.) is

Lipschitz continuous:
2P (t + AL, ,7) — (T + Atf(T))| < LA

where 2 (t + At, t,7) denotes the solution at time ¢ + At, when the initial condition
is taken to be T at time t and L is a constant.

Now take z(n;) = T and compute the distance between the stochastic process at
step nyy1, ©(n41), and the differential equation at time ¢, 1, with initial condition T

at time t;, xP(t;, 1,4, T) shortened to zP (I + 1) :

lz(nsr) — 2P+ 1) = |o(m) + At f(z(m)) + aln) — 2 (1 + 1)
< LA + aln)

As a result:

IN

2 (L +1) = a(nyy)| < 2 (0+1) =27+ D]+ |2 0+ 1) = 2(nig)]

< ef (U +1) = 2P+ 1) + LA + a(n) (13)
where the first term is the distance between two trajectories of the ODE, one started

at x(ng) and one at x(n;) at time to and ¢; respectively, and the second term is the

distance between the ODE and the stochastic process at time ¢;,;. We know from
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Lemma 3 that the last two terms on the RHS of (13) can be made arbitrarily small
by an appropriate choice of At; and n;. We also know that, if the two trajectories
of which in the first term of the RHS of (13) converge, their distance will become
increasingly small. An assumption that is sufficient to establish the result that follows

requires:
|2 (t + At t, x4+ Az) — 2P (t + At t,2)| < (1 — AAL) |Ax] (14)
with 0 < A < 1. If property (7) holds, then:
|2 (1 4+ 1) — 2P (1 + 1) < (1= AAL) |2 (1) — ()|
and as a result, inequality (13) can be rewritten as:
|28 (14 1) = z(ny)| < (1= AAG) |28 (1) — x(m)| + LA + a(n) (15)

We can now show that, if x(n;) lies in an e-neighbourhood of the trajectory of the
ODE, so will z(n,,,), for a suitable choice of ¢ and At.

Under the assumptions of this Lemma, inequality (15) yields:

|28 (14 1) — z(ny)| < (1= AA)e + LA + any)

By Lemma 3 a(n;) < r(e) = % < £, which holds for 0 < ¢ < ‘é’% as assumed.
Hence:
5 ,  A%e?3
(1 — )\Atl)€ + LAtl + a(nl) S g — )\Atl{f + LAtl + AL

e 3)\e
as stated.

We also need to show that for A\e(2L)™1 < At; < 3Xe(2L)71, At; also satisfies
Lemma 3, i.e. At; < Aty(z,p) for all x € D. The radius p depends on z and is a
measure of how fast f(z) changes in a neighbourhood of z. Since f(x) is Lipschit z
and D is compact, this radius will have a positive lower bound, as x moves in D. Let

this be p > 0. Hence:

. . P
5o = inf o) = inf (g7 7az31) >
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and since £ < (3\)"'2LAt, by assumption, the assert follows. §

Proof of Theorem 1
To proof the Theorem we need to estimate the probability that Lemma 3 holds
for all n; € I. To this aim note that:

Pr |sup |2(n)) — 25(1)] < g] = Pr [supoz(nl) < r(g)]

n el ny €l
where, as before 2P (1) = 2P (t;, to, 2(nyg)).

From Lemma 3:

n; np—1
alng) = le(n)| = Z e(l) — Z e(l)
l=no l=ng
and from Lemma 2: ,
Elei ()] <

As a result:

=2
a(n) < \/NMsupsupeij(l)ngM T

7 k g<n1)2

Ela(m)] < VNM—-

By Markov’s inequality:

Pra(n) > r(e)] <

Hence:
1

9(i)?
where C' = (3\?)'4L\/N M7? since () = 3(4L) ' \*c2. In the statement of the
theorem 7 = Ny(p), defined in Lemma 3 and & = min{(3\)"'2L, 1/ (6A*)~14pL} as

N

C
Pria(ny) > r(e);n; > ng,my € I] < = Z
Jj=no

from Lemma 4. g

Proof of Remark 1
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To prove the statement we need to show that every strict Nash equilibrium satisfies

condition (7), i.e.:
|2 (t + At t, 2+ Az) — 2P (t + At ¢, )| < (1 — AAL) |Ax] (16)

This condition holds if the system of ODE (5) admits the following quadratic Ljapunov
function (see, for example, Ljung (1977)):

V(Az,t) = |Az| (a)

%V(Am,t) <—=C|Az]> C>0 (b)

Suppose x* is a strict Nash equilibrium and w.l.g. let x* = 0. Consider the

linearization of the system (5) around z* =0 :
d
—
dt

++—o denotes the Jacobian matrix of f(x) at 2* and lim,_,g % = 0.

D(t) = Ar + g(x)

where A = Df(x)
From Ritzberger and Weibull (1995), Proposition 2, we know that a Nash equilibrium

is asymptotically stable in the replicator dynamics if and only if it is strict. Hence
we also know that all the eigenvalues of A at x* have negative real part and we can

consider the following scalar product in RV¥™:

o0

(2, y) = / (M, eAty)dt
0

and choose:
V(z,t) = (z,z)

which satisfies condition (a). The scalar product (5) also satisfies condition (b), since:

SV (a,1) < — |af? +2 (2, g(x)) < ~ | +2v/T22) v/ (a(a), 9]

By the equivalence of norms in RV, there exists a ¢ > 0 s.t. /(z,z) < ¢|z|. For

r > 0, consider an open ball B, = {x € A : |z| < r} such that B, C D and
lg(x)| < (1/(4c?)) |x| in B,. Then:

d 1 1

Ly (a1) <~ o 26 |allg(w)] < 5 o < 5 V(a.0) i B,
which shows that condition (b) holds. §
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Notes

'We hereby assume that each player’s action space has exactly the same cardinality (i.e. m).

This is purely for notational convenience.

2The system of equations (2) carries a direct analogy with Borgers and Sarin (1997) reinforcement
model, where payoffs are assumed to be positive and strictly less than one and the payoff player ¢
gets by playing action j is taken to represent exactly the weights given to the unit vector in the
above formulation. Hence in their model these weights do not depend on the step number n, and

as a result, the formulation of their model only accounts for the reinforcement effect.

3Convergence in the sense that:

inf |z(t) — x| — 0 for t — o0
r€DR
4In essence, the reason why this approximation result holds for random step sizes is related to
that stated in Remark 4.3 of Benaim (1999) and therein references, namely that the approximation
results of this type hold also for stochastic step sizes, when these are measurable with respect to

S{z(n)} and square summable. This could offer an alternative way to prove Lemma 1.

5In essence, the reason is that we cannot translate the O(n=2) order of magnitude statement into
a numerical bound on the error term that we make by approximating the learning process by the
replicator dynamics. Knowing that the approximation error is O(n~2), means that we know that
the norm of the error il less than kn=2 for some positive k. However, we do not know k, and this

may not be independent of n.

OWe say that a solution z = 0 is stable if for each ¢ > 0, there is § = §(s,tg) such that
| z(to) |[< 0 = | z(t) |< € for all £ > t; > 0. We say that a solution z = 0 is asymptotically stable if
it is stable and there is ¢ = ¢(to) > 0 such that z(t) — 0 as t — oo for all | z(to) |< c¢. We say that
a solution is uniformly asymptotically stable if ¢ does not depend on tg,i.e. if for each € > 0 there

is T =T(e) > 0 such that | z(¢) |< e for all t > tg + T'(¢) and for all | z(tg) |< c.
These definitions are standard and can be found for example in Khalil (1996) p. 134.

"In the terminology of Benaim (1999) and applied in Laslier et al. (2001), p. 347, the replicator
dynamics constitutes a.s. a limit trajectory (and not only an asymptotic-pseudo-trajectory) for the

process.

8 Although not pursued in this paper, these considerations could pave the way to a number of
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interesting comparative statics exercises.
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