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Abstract 
We show that strategic market games, the non-cooperative implementation of a matching with 
transfers or an assignment game, are weakly acyclic. This property ensures that many 
common learning algorithms will converge to Nash equilibria in these games, and that the 
allocation mechanism can therefore be decentralized. Convergence hinges on the appropriate 
price clearing rule and has different properties for better- and best-response dynamics. We 
tightly characterize the robustness of this convergence in terms of so-called schedulers for 
both types of dynamics. 
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1. Introduction

Convergence to pure Nash equilibria is considered a fundamental problem for at

least two reasons: distributed computation of equilibria, and robustness in the sense

that simple agents will reach these outcomes by trial and error. Matching and as-

signment games (Shapley and Shubik, 1971) have been shown recently to converge

for different evolutionary dynamics, but these results are embedded in a cooperative

framework and are defined in terms of an explicit process of forming and breaking

coalitions. We complement this analysis by putting the problem in a non-cooperative

framework and show that a strategic market game (Dubey, 1982; Simon, 1984; Be-

nassy, 1986) – in which strategic players bid competitively and publicly for a set of

indivisible goods – is also weakly acyclic, converges to Nash equilibrium under mild

assumptions, and can therefore be decentralized. A notable difference in approaches

is that in a market game the set of equilibria is larger than the competitive outcomes

of an assignment game, and players may converge to inferior semi-Walrasian outcomes

of Mas-Colell (1982).

Convergence property depends on the choice of dynamics, the process according

to which agents update their strategies. A natural dynamic to consider for a non-

cooperative game is a better- (best-) response dynamic. Under this process players

sequentially (one by one, in random order) shift to one of the better (best) responses

to the current action profile. A sufficient condition for convergence of better-response

dynamics is weak acyclicity : for any profile there is a path of better responses leading

to a pure Nash equilibrium.

Many important classes of games exhibit weak acyclicity including all generalized

ordinal potential games (Monderer and Shapley, 1996). The closest results to this

paper, however, lie in the cooperative game theory literature that directly studies

matching problems. Convergence has been shown for models of two-sided matchings
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with non-transferable utility (Ackermann et al., 2011), and moreover a subset of

stochastically stable outcomes can be easily identified (Newton and Sawa, 2015).

Convergence for transferable utility matchings and assignment games under different

plausible dynamics has also been shown in multiple studies (Klaus et al., 2010; Chen

et al., 2010; Nax et al., 2013; Klaus and Newton, 2016) and refined to stochastic

stability under perturbed dynamics (Klaus and Newton, 2016; Nax and Pradelski,

2015). Nax (2019) shows the results for uncoupled dynamics where players have

no information about other players’ payoffs. The analysis in (Nax and Pradelski,

2015) is particularly close to the present paper and our proofs largely follow the same

path with two important differences. Since we refine weak acyclicity and state the

results in terms of schedulers (discussed below) we have to construct the path to

the equilibrium explicitly, while the weak acyclicity considered by Nax and Pradelski

(2015) only requires showing that some path exists. The second difference is that, due

to our non-cooperative framework and different rematching process, the latter does

not have to converge to the core (please see Appendix B for the exact characterization

of equilibria).

The convergent process can also be seen as similar to the mechanism in Demange

et al. (1986) but there is a subtle difference. To show convergence, we need to show

acyclicity not only on path or in the main phase of the mechanism in Demange et al.

(1986), but also everywhere off the equilibrium path, including the profiles where

buyers are bidding too much and for possibly suboptimal items. In particular we

must consider the cases where the highest bidding buyers switch goods, even though

this would never happen if the game started at zero prices and proceeded according

to the best-response dynamics. This is because we want to guarantee convergence

of perturbed learning algorithms that explore the strategy space and learn through

experimentation, and thus reach any outcome within the strategy space with positive

probability. In fact the game is likely to start at a Nash equilibrium; no-trade is
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(usually) also a Nash equilibrium. It is crucial therefore to explore convergence of

algorithms that involve some experimentation, so that they would be able to move

between the sinks of best responses that are Nash equilibria, and would be able to

start trading.

It is possible to refine weak acyclicity for both better and best responses. Apt and

Simon (2015) provide a classification of refinements of weak acyclicity up to finite

improvement property (i.e. potential games), introducing different schedulers for the

classes in between. A scheduler is a function that somehow selects a player who can

shift to a better response in each profile to get out of best- or better-response cycle.

The complexity of this function (and the respective class of schedulers) indicates

robustness of the dynamic process. For example, a local scheduler only requires

that an agent is selected at each profile according to some fixed arbitrary order (e.g.

bargaining power of agents). A state scheduler is more general, and can select the

deviating player based on the information from the state of the game (action profile),

e.g. the player with the highest payoff etc. Therefore, if a game requires a state

scheduler and does not admit a local scheduler, convergence in this game is, in this

particular sense, less robust.

The concept of a scheduler is also attractive because it indicates how difficult it is

for the agents to choose the improvement path that leads out of cycles and towards the

equilibrium. A set-based scheduler would indicate that this process only requires that

agents act in a particular order (for a local scheduler) or, at least that the deviating

agent is chosen independently of the action profile (for a general set scheduler).

We place both better and best responses for market games within the classification

of Apt and Simon (2015). For better responses we show that only the most general,

state scheduler exists. For best-response dynamics we can claim a stronger result;

that a market game admits any local scheduler. In other words, as long as the order
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of deviations is predetermined (e.g. implicitly by bargaining power of the players or

in any arbitrary way) convergence is guaranteed.

The paper is organized as follows. The next section introduces the definitions of

the market game, the schedulers and related concepts. The third section contains

the main results for convergence and counter-examples and is split into two parts for

best-response and better-response dynamics. Finally the last fourth section discusses

an alternative market clearing rule and concludes. Since proofs are constructive and

notation-heavy, they are collected in Appendix A. Appendix B characterizes Nash

equilibria, the sinks of the convergent dynamics, in terms of competitive outcomes.

2. Preliminaries

2.1. Strategic market games. Let B and S denote respectively the sets of buyers

and sellers, with |B| = N and |S| = M . Each seller has one good to sell, and therefore

we use S for the set of goods as well. Each buyer j has a valuation for each seller’s

good i, denoted by hij, while each seller has a reservation value for his own good

ci > 0. We refer to {h, c} as an economy. We will call a smaller economy {h′, c′}

restricted to goods S ′ ⊂ S in a natural way with hij = h′
ij and c′i = ci for all i ∈ S ′

and j ∈ B a subeconomy for goods S ′.

We will use i for a representative seller, j for a buyer, and k for some player, either

a buyer or a seller. In the strategic market game each seller i ∈ S submits a price

pSi ∈ R+, and each buyer submits an index of a seller mj ∈ S and a positive bid for

her good. We will write the buyer’s action as an M -vector with at most one strictly

positive element, pBj ∈ RM
+ , pBj = (pB1j, ..., p

B
Mj). We also implicitly define mj(p) as a

function that gives the good that the buyer j is bidding for in profile p. Note that

she does not necessarily obtain this good in p.

The set of admissible prices/bids for player k ∈ B ∪ S is denoted Ωk. These sets

are finite with bids and prices chosen on a grid with ϵ between consecutive values.
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We will assume without loss of generality that ϵ = 1 and bids and prices therefore

have to be integers, Ωk ⊂ Z for all k. Likewise all hij ∈ Z for all i ∈ S and j ∈ B.

An action profile combines actions of all players p = (pB1 , . . . , p
B
N , p

S
1 , . . . , p

S
M) ∈

Ω =
∏

k∈B∪S Ωk. The action of a generic player k is just pk. For simplicity dominated

actions – bids above valuations and seller prices below costs – are not allowed and

are excluded from Ωk and Ω.

Once all bids and prices are submitted, a clearing house chooses an assignment in

the feasible set

X = {(x11, . . . , xNM) : xij ∈ {0, 1},
∑
j∈B

xij ≤ 1 for all i ∈ S}.

The clearing house allocates trade to maximize surplus

Ξ(x, p) =
∑
i∈S

∑
j∈B

xij(p
B
ij − pSi ).

In other words, it draws from the following set of surplus-maximizing assignments:

Π̄(p) = {x ∈ X : Ξ(x, p) ≥ Ξ(x′, p) for all x′ ∈ X}.

To ensure that the clearing house prefers more trade even when arbitrage is zero,

we assume that it chooses assignments that are not ray-dominated (Simon, 1984):

Π(p) = {x ∈ Π̄(p) : there is no x̂ ∈ Π̄(p) such that

x̂ ̸= x and x̂ij ≥ xij for all i ∈ S, j ∈ B}.

Once the clearing house chooses an assignment x, the market clears at the respective

prices of buyers and sellers. That is, the payoffs are defined by the following rule that
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we call s-prices:

(s-prices) uB
j (p, x) = max

i∈S
(xijhij)−

∑
i∈S

pBijxij and uS
i (p, x) =

∑
j∈B

(pSi − ci)xij.

We will discuss the alternative market clearing rule (and why it does not work) in

the last section.

2.2. Dynamic components. The following definitions are taken from Apt and Si-

mon (2015). An action p′k of player k is a better response from an action pro-

file p if uk(p
′
k, p−k) > ui(pk, p−k) and a best response from an action profile p if

uk(p
′
k, p−k) ≥ uk(pk, p−k) for all p′k ∈ Ωk. A path in Ω is a sequence (p1, p2, ...) of

action profiles such that for every l > 1 there is a player k such that pk = (p′k, p
l−1
−l )for

some p′k ̸= pl−1
k . Player k is then said to have deviated from pl−1. A path is called an

improvement path (a best response improvement path, shortened to BR-improvement

path) if for all l > 1, plk is a better (best) response to pl−1
−k , where k is the player who

deviated from pl−1. The sets of improvement paths and BR-improvement paths from

a profile p are written as P(p) and PBR(p).

Following Young (1993); Milchtaich (1996), and Apt and Simon (2015) we say

that the game has the finite improvement property or FIP (respectively, the finite

best response property, FBRP) if every improvement path (BR-improvement path)

is finite. The class of games with FIP is exactly the class of generalized ordinal

potential games (Monderer and Shapley, 1996). A strategic market game is weakly

acyclic (respectively, BR-weakly acyclic) if for any action profile there exists a finite

improvement path (BR-improvement path) that starts at it.

A scheduler (denoted f) is a function that given a finite sequence of profiles p1, ..., pk

that does not end in a Nash equilibrium selects a player who did not select a best

response in pk. That is, the scheduler defines the rule of picking the next deviating
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player at each profile with the goal of avoiding cycles. A BR-scheduler is a scheduler

applied to BR-improvement paths. We will say f(p) = ∅ if p is a Nash equilibrium.

We say that an improvement path ρ = (p1, p2...) respects a scheduler f if for all

l < |ρ| we have pl+1 = (p′k, p
l
−k) where f(p1, ..., pl) = k. We say that a strategic

game respects a scheduler f if all improvement paths ρ that respect f are finite, and

similarly for a BR-scheduler.

We now define different kinds of schedulers from less to more restrictive.

A scheduler f is state-based if for some function g : Ω → N we have

f(p1, ..., pl) = g(pk).

This is the most general class of schedulers, i.e. all schedulers are state-based.

The function g : 2(S∪B) → (S ∪ B) is a choice function if for all A ̸= ∅ we have

g(A) ∈ A. A scheduler f is set-based if for some choice function g:

f(p1, ..., pl) = g(NBR(pl)).

Finally, a set-based scheduler f is local if g also satisfies

g(A) ∈ B ⊆ A =⇒ g(A) = g(B).

A local scheduler f can be equivalently defined in terms of some strict total order

≺f :

f(p) = k ∈ {k ≺f k′,∀k′ ∈ I(p)}.

That is, deviating players are chosen according to some predefined priority rule1.

Since ≺f is a strict total order, such k is unique. We will also write j ⪯f k for

“j ≺f k or j = k”.

1Using ≺f for a local scheduler is without loss of generality by Proposition 1 in Apt and Simon
(2015), where this order is captured by permutation π.



8

Apt and Simon (2015) provide a classification of refinements of weak acyclicity up

to finite improvement property (i.e. potential games) using the schedulers defined

above with inclusions as follows:
FIP

(potential

game)

Local Set State WA

FBRP LocalBR SetBR StateBR BRWA

It will be convenient to talk about schedulers in terms of potentials. A function F

is an f -potential iff for all k ∈ B ∪ S, and p′i, p ∈ Ω:

if f(p) = k and uk(p
′
k, p−k, π(p

′
k, p−k)) > ui(pi, p−i, π(pi, p−i)), then

(p′i, p−i) < F (pi, p−i).

A scheduler can be thought of as giving “priority” to some set of players, either

sellers or current top bidders etc. Denote the set of players who are not playing a best

response in profile p by I(p). We will say that a scheduler (BR-scheduler) prioritizes

some set of players ↑f (p) over another set of players ↓(p) if f(p) /∈ ↓(p) whenever

I(p) ∩ ↑(p) ̸= ∅. For a local scheduler f with an associated strict total order ≺f this

implies that k ≺f k′ for any k ∈ ↑(p) and k′ ∈ ↓(p), and for all Ω. For example, with

↑(p) = S and ↓(p) = B and i ≺f j for any i ∈ S and j ∈ B the scheduler f prioritizes

sellers over buyers. Notice that ↑ and ↓ can also be functions of the profile, e.g. the

set of top bidders. We will thus, with abuse of notation, write ↑(p) ≺f ↓(p) meaning

that given a profile p, f prioritizes ↑(p) over another set of players ↓(p) even if f is

not local.

2.3. Tie-breaking assumptions. Nash equilibria of a market game can include ties,

and thus h and c are not by themselves enough to define a market game. We assume
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that the clearing house chooses the buyer in any tie in Π(p) by randomizing over

the full support. Only the buyers who obtain the good in the realized outcome pay

its price. Every seller i has a weight for buyer j denoted by πij. The probability of

obtaining a good i by any buyer j at her winning bid pBij is proportional to the seller’s

weight for this buyer. In other words it equals

πij∑
j′∈B,pB

ij′=pBij
πij′

.

The probability of any outcome x ∈ Π(p), denoted by Pr(x|p), is then the product

of these expressions. Note that the clearing house is free to break ties differently for

each seller, or, in other words, sellers can break ties themselves according to their own

unique vectors of weights. We will denote the expected utility of player k in profile

p by Uk(p) = Uk(pk, p−k) =
∑

x∈Π(p) Pr(x|p)u(p, x), where p−k are offers of all sellers

and all other buyers B \ k.

We assume a small level of risk-aversion to make sure that two players with equal

valuations hi for the same good i would not tie for it at a price hi − 2, i.e. two steps

away from the competitive price. The following assumption says that in this case,

each of them prefers to take the good for herself definitively by bidding 1 more, even

though the payoff is the same in expectation.

Assumption 1. Buyers exhibit risk-aversion when they compare two outcomes of

equal expected utility. In other words, any buyer j prefer p to p′ if either Uj(p) > Uj(p
′)

or Uj(p) = Uj(p
′) and |Π(p)| < |Π(p′)|.

Although tie-breaking issues can generally expand the set of Nash equilibria of

a market game, they can be contained quite well. It only affects the prices in the

negligible manner, and does not to affect the matchings at all as long as we make

sure that the valuations are no more coarse than the possible bids:



10

Assumption 2 (Coarsness). The action space is at least two times less coarse than

the valuation space, i.e. for any i ∈ S and j ∈ B, hij = 2z, for some z ∈ Z.2

The assumption says that the currency medium is smaller than the minimal amount

required to represent the smallest relevant payoff difference and allows one to compare

some tied outcomes as well.

3. Convergence results

3.1. Best responses. We first show that even when agents are restricted to best

responses, the market game is not generally a potential game. In all examples assume

the ties to be broken uniformly.

We cannot hope to achieve convergence unless we force sellers to adjust their ac-

tions before the buyers for the same reasons that we have defined s-prices to be the

market clearing rule (see the discussion section for the counterexample). We will

show a stronger counterexample here; even if we restrict sellers to always move before

buyers when they have a better response, the game does not necessarily converge.

An example of such a game that does not have a BR-potential, i.e. does not satisfy

FBRP, is below.

Example 1. Market game that has no FBRP.

2To see why this assumption is necessary please consult Appendix B, which contains two theorems
characterizing equilibria with and without the assumption.
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1


valuations h costs c

b4 b5 b6 s1 s2 s3
b14 b24 b34 b15 b25 b35 b16 b26 b36
3 0 0 4 0 0 0 0 4 4 2 4
0 3 0 4 0 0 0 0 4 4 2 4
0 3 0 4 0 0 0 0 4 4 3 4
0 3 0 4 0 0 0 4 0 4 3 4
0 3 0 4 0 0 0 4 0 4 4 4
0 3 0 4 0 0 0 4 0 4 4 2
0 5 0 4 0 0 0 4 0 4 4 2
0 5 0 4 0 0 0 4 0 4 5 2
0 5 0 0 0 3 0 4 0 4 5 2
0 5 0 0 0 3 0 4 0 2 5 2
0 5 0 0 0 3 0 4 0 2 5 3
0 5 0 0 0 3 0 0 4 2 5 3
0 5 0 0 0 3 0 0 4 2 5 4
3 0 0 0 0 3 0 0 4 2 5 4
3 0 0 0 0 3 0 0 4 3 5 4
3 0 0 0 0 3 0 0 4 3 2 4

b4 b5 b6 s1 s2 s3
0 6 4 3 1 3
5 6 4 3 1 3
5 6 4 3 2 3
0 6 6 3 2 0
0 6 6 3 3 0
0 6 6 3 3 1
3 6 0 3 3 1
3 6 0 3 4 1
3 7 0 0 4 1
3 7 0 1 4 1
3 7 0 1 4 2
3 0 4 1 4 2
3 0 4 1 4 3
5 0 4 1 0 3
5 0 4 2 0 3
5 0 4 2 1 3

action profiles p payoffs u

s1 s2 s3

b12 b2 = T22 b32

h14 = h158

h166

h24 = h2610

h256 h346

h3510

h368

b43
b5 = T14 b6 = T34

The diagram and the table above show a BR-improvement path that cycles. The

diagram shows the valuations (bars) and bids (dots) of all buyers for each good

individually, starting with a profile where buyer 5 buys the first good, buyer 2 buys

the second, and buyer 6 buys the third good. After every shift by a buyer the sellers
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adjust their prices immediately and are not shown. The order of moves and the

detailed BR-improvement paths can be seen in the table with circled payoffs indicating

players that have a better response deviation. We use the first three buyers b1, b2, b3

as a gadget to make sellers drop their prices to 2 (for a positive payoff of 1) when the

three actively moving buyers b4, b5, b6 do not bid for a particular good. The arrows

connect the shifts of every buyer and can be seen to cycle. Thus, there cannot be a

generalized potential for this game even when agents are restricted to best-response

behavior. Moreover, in the depicted cycle sellers always move before buyers.

Nonetheless, the market game is weakly acyclic and we will prove a stronger fact

that the game admits a local BR scheduler. This is the exact position of the market

game within the classification of schedulers, and it implies that the game is weakly

acyclic through the relationships in Apt and Simon (2015). In fact the game admits

any local BR-scheduler as long as sellers move before buyers:

Proposition 1. Any strategic market game admits a local BR-scheduler. Moreover,

it admits any local BR-scheduler that prioritizes sellers over buyers.

The proof of this proposition as well as the other results are collected in Appendix

A.

3.2. Better responses. In terms of better-response dynamics, some paths also cycle,

i.e. a strategic market game is not a (generalized ordinal) potential game. This is

implied by a stronger fact that it does not admit any local or set scheduler, in contrast

with its best-response counterpart. The exact place of the better-response dynamics

in the classification is the fact that the game admits a state scheduler. In other words,

fixing an arbitrary order of moves is no longer enough when players do not always

play best responses. We again first show a counterexample for the existence of a set

scheduler and then prove the positive result for a state scheduler.
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The cycle of action profiles illustrated below respects the following local scheduler:

s1 ≺f s2 ≺f b4 ≺f b3 ≺f b1 ≺f b2 and any local scheduler obtained from it by

changing the positions of buyers 1 and 2 since they do not have improvements and

play their unique best responses.

Example 2. Market game that does not respect a local scheduler, cycle for b4 ≺f b3.[
2 2 10 10
2 2 8 8

] 11
1


valuations h costs c

b3 b4 s1 s2
b13 b23 b14 b24
4 0 3 0 4 2
4 0 5 0 4 2
4 0 5 0 5 2
6 0 5 0 5 2
6 0 5 0 6 2
6 0 7 0 6 2
6 0 7 0 7 2
8 0 7 0 7 2
8 0 7 0 8 2
8 0 0 3 8 2
8 0 0 3 8 3
0 4 0 3 8 3
0 4 0 3 2 3
0 4 0 3 2 4
0 4 3 0 2 4
0 4 3 0 3 4
4 0 3 0 3 4
4 0 3 0 4 4

b3 b4 s1 s2
6 0 3 1
0 5 3 1
0 5 4 1
4 0 4 1
4 0 5 1
0 3 5 1
0 3 6 1
2 0 6 1
2 0 7 1
2 5 7 1
2 5 7 2
4 0 0 2
4 0 1 2
4 0 1 3
4 7 1 3
4 7 2 3
6 0 2 0
6 0 3 0

s1 s2

b12 b2 = T22

h13 = h1410

h23 = h248

b43
b3 = T14

action profiles p payoffs u

Sellers’ payoffs are independent of the other sellers and a similar cycle exists if we

were to have s2 ≺f s1. The game is also symmetric for buyers and there is another

cycle for a scheduler with b3 ≺f b4, which can be obtained by switching the actions of

buyer 3 and buyer 4. Since there are only two buyers who can have better responses,

every set scheduler that prioritizes sellers is also a local scheduler. Therefore, this

game is also an example of a market game that does not admit a set scheduler.
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There is however a natural way to ensure convergence for better responses by using

a state scheduler.

Proposition 2. Any strategic market game admits a (state) scheduler.

The idea behind the proof of this proposition is that the scheduler ensures that the

players who can potentially cause a price drop move first. These players are the top

bidders that are not tied and are willing to switch to another good. If there are no

such players, other top bidders T (p) move, and then the rest of the buyers who do not

have a highest bid for any good. We thus separate the two phases of the convergence

process, the main phase similar to (Demange et al., 1986) and the rematching of top

bidders. This is the same approach as in (Nax and Pradelski, 2015) for aspiration

dynamics, but with more details required by the non-cooperative setup.

4. Discussion

In this paper we have shown the restrictions necessary to ensure convergence of

a decentralized market for indivisible goods to an equilibrium. These results can

be used to refine the sets of predictions of some perturbed learning dynamic using

the standard approaches to stochastic stability stemming from Young (1993); Foster

and Young (1990), or to make sure that market institutions are designed with these

restrictions in mind to promote the desired outcomes. We conclude by discussing the

robustness of these results to several other specifications.

4.1. Restricted action space. Schedulers restrict the possible deviations on the

route to the Nash equilibria by narrowing the set of possible deviators. A natural

alternative to this might be to restrict the set of actions instead. By construction,

such an approach would have to depend on a particular game and would not be as

universal as schedulers. However, for the strategic market game in particular, this

would not get us far. It appears reasonable to allow players to at least make a best
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response (and possibly some other actions) at each profile. However, by Example 1 we

know that the game does not satisfy FBRP, and therefore even if there were no other

actions except for best responses, the game would not always reach an equilibrium. If

we could choose to disallow best responses in some profiles instead, we could simply

implement one of the optimal mechanisms like (Demange et al., 1986). Therefore,

at least for the strategic market game, the possibilities for refining weak acyclicity

appear to lie with the schedulers, not with restricting actions.

4.2. Discrete bids. We consider a discretized game with an arbitrarily large but

finite set of admissible action profiles. One reason for this is that a truly continuous

game would require refining the concept of better- (best-)response dynamics to avoid

infinitely small price adjustment sequences. As an example, Barron et al. (2010) and

Hofbauer and Sorin (2006) use differential inclusions for this purpose. However, a

continuous setting is less relevant to issues in this paper and to laboratory or real-life

scenarios where players are ultimately limited to finite increments of bids (at least

up to machine precision). At the same time, the necessity of Assumption 2 and the

fact that prices can only be one ϵ away from competitive can be useful if ϵ is taken

to represent the coarseness of players’ perception of bids and valuations. If players

cannot make sufficiently precise bids, perhaps, for behavioral reasons that limit their

perception of small price changes, then the adverse effects of this behavior would be

limited by the Nash equilibrium characterization results in Appendix B.

4.3. Alternative market clearing rule. We could alternatively always clear the

market at buyers’ prices, i.e. replace the market clearing rule that we called s-prices

with the following:

(b-prices) uB
j (p, x) = max

i∈S
(xijhij)−

∑
i∈S

pBijxij and uS
i (p, x) =

∑
j∈B

(pBij − ci)xij.
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There are several problems with clearing the market at buyers’ prices. In a discrete

action version of the market game that clears at the highest bid the surplus no longer

has to be zero in a Nash equilibrium; a simple example is any market where two

buyers are willing to tie for a good at a price strictly higher than the seller’s price.

This is not the problem in itself, and we could focus on whether the highest bid is

competitive and ignore the sellers’ side altogether. However, even then, the market

does not converge to the Nash equilibria as the game is no longer weakly acyclic. In

other words, an active seller is necessary to guarantee convergence. The game below

is an example of such a market where the cycle is the consequence of an inappropriate

market clearing rule that removes incentives from the sellers.

Example 3. Market game that is not weakly acyclic under b-prices.

[
2 0
4 4

]
b1 b2 s1 s2

b11 b21 b12 b22
1 0 0 1 1 1
0 0 0 1 1 1
1 0 0 0 1 1
0 1 0 0 1 1
0 0 0 0 1 1
0 1 0 1 1 1

b1 b2 s1 s2
1 3 0 0
0 3 0 0
1 0 0 0
3 0 0 0
0 0 0 0

< 3 < 3 0 0

surplus matrix A 0-arbitrage action profiles p payoffs U

We will show how the example works. First note that in any Nash equilibrium

there is no arbitrage (by remark in the beginning of the proof of Theorem 2). At

the same time sellers do not have any better responses in any profile. Fix pS1 and pS2

at 1. Then there are 6 possible zero-arbitrage profiles, but none of them are Nash

equilibria; these are shown in the table above with circled payoffs indicating players

with a devitation. In the last profile the buyers tie for good 2, but by Assumption

1, there is at least some positive probability that buyer 1 does not obtain the good.

Then shifting to good 1 is an improvement for her. Since there are no better responses

leading sellers to increase their prices and no equilibria at current seller prices, every

chain of better responses has to eventually cycle.
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Appendix A. Proofs

A.1. Preliminaries. Before proving Propositions 1 and 2 we will introduce several

helpful lemmas and definitions, most importantly the individual “components of po-

tentials” of players Fk(p), F
BR
k (p) that we will use in constructing the f -potential

function for better and best responses respectively.

In order to constructively prove acyclicity of improvement paths it is convenient to

rely on auxilary variables of a particular form. For example, the sellers simply match

the highest bid whenever they can, so it will be useful to introduce functions to de-

scribe how prices change with the sellers’ behavior. More generally, we will introduce

variables that do not increase/decrease as a subset of players make deviations. Let

σK
i (p) be the smallest price of good i in any profile on any improvement path such

that only players in the set K move on this path. Formally, let the set ΦK(p) ⊆ P(p)

be the set of profiles such that for any profile p′ ∈ ΦK(p) there is an improvement

path ρ ∈ P(p) from p to p′ that respects the scheduler f , and on which for any p̂ ∈ ρ,

p̂ ̸= p′, the deviating player f(p̂) ∈ K. The σK
i (p) is then defined as

σK
i (p) = min

p′∈ΦK(p)
p′Si .

We will use several expressions constructed in this manner. In particular σS
i (p) is

then the smallest price of good i obtained after all sellers move from profile p. In

practice, this value either equals the highest bid for the good, or the current seller’s

minimum price level if there are no bids above the cost. Another useful expression

is σ
S∪T (p)
i (p), the smallest price of good i after the sellers and the top bidders move,

because for the prices to decrease a player from S ∪ T (p) has to move.

Next, let ϕK
j (p) be the highest payoff that buyer j ∈ B can obtain at current prices

in any profile on any improvement path such that only players in the set K move on
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this path. Formally we can define ϕK
j as follows:

ϕK
j (p) = max

p′∈ΦK(p)
max
i∈S

(hij − σS
i ).

The value of ϕj(p) represents the opportunity for buyer j to gain by switching the

good that she is bidding for assuming that any ties would break in her favor. In other

words, it is the highest difference between the value of any good and the price σS
i ,

which is either the highest bid or the seller’s minimum price, whichever is higher.

These variables are a convenient way to simplify proofs of potentials for schedulers;

by definition, the value of ϕj(·) for any buyer j can only decrease until some buyer

j′ /∈ K moves (see Lemma 1). Notice that we do not require improvement paths to

be maximal, and in particular the unique path in ΦK(p) could be a singleton ρ = (p),

e.g. if f(p) /∈ K. Moreover, such path always exists, ΦK
j (p) is nonempty and therefore

ϕK
j (p) and σK

i (p) are well-defined.

The ”component of potential” FBR
k (p) for a buyer k is the difference between

ϕ
S∪{j∈B:j⪯fk}
k (p) and the payoff implied by the buyer’s current bid if she were the

unique top bidder regardless of whether she is actually winning, is in a tie or is not

the highest bidder. If this difference is negative, FBR
k (p) = 0. The component for the

seller is just the difference between the highest bid and the seller’s price, the “spread”.

In other words, the expression for FBR
k (p) is then:

FBR
k (p) =


|pSk −maxj∈B pkj| if k ∈ S

max(0, ϕ
S∪{j∈B:j⪯fk}
k (p)− (hm(k)k − pBm(k)k)) if k ∈ B.
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A similar expression Fk(p) for better responses is the difference between ϕ
T (p)∪S
k (p)

and the payoff implied by the buyer’s current bid:

Fk(p) =


|pSk −maxj∈B pBkj| if k ∈ S

max(0, ϕ
T (p)∪S
k (p)− (hm(k)k − pBm(k)k) if k ∈ B.

Notice that the only changes from the best-response case is that we consider the whole

set of top bidders and sellers T (p) ∪ S instead of the set of players that precede k in

≺f .

These definitions require some explanation. The dynamics of the game involve two

types of behavior: buyers shifting between goods for higher payoff thus lowering the

Fk(·) or FBR
k (·) and bidding wars with generally zero Fk(·) and FBR

k (·). The functions

will allow us to separate the behaviors and ensure that shifting between goods precede

the bidding wars thus ensuring that there are no cycles.

The following is the only new definition introduced in this paper, and we use it to

more concisely describe the potentials for schedulers:

Definition 1. We will say that a function β is nondecreasing (nonincreasing)

in the better responses of a player k ∈ K or of the set of players K at some

profile p if β(p) = minp′∈ΦK(p) γ(p
′) (or β(p) = maxp′∈ΦK(p) γ(p

′)) for some function

γ : Ω → R.

The expressions ϕK
j (p) introduced above are non-increasing in better responses of

players in the set K, while σK
i (p) are non-decreasing in their better responses. The

key property of such functions is that the value is non-increasing or non-decreasing

until a player that is not in K moves. This is captured by the following lemma.

Lemma 1. Take an action profile p and any profile p′ that is an improvement for f(p)

from p. If function β is non-decreasing in the better responses of the set of players K
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at p and f(p) ∈ K then β(p) ≤ β(p′). If β is non-increasing in the better responses

of the set of players K at p and f(p) ∈ K then β(p) ≥ β(p′).

Proof. Since f(p) ∈ K, for any improvement path ρ′ ∈ ΦK(p′) there is also an im-

provement path ρ = (p)⌢ρ′ ∈ ΦK(p), obtained by prepending p to ρ′. Since β(·) is

the maximum (or minimum) over these sets, β(p) ≥ β(p′) (or β(p) ≤ β(p′)). □

We now deal with the problem of tie-breaking. For this we will introduce a function

C(·):

C(p) =
∑

j∈T (p)

∑
j′∈T (p):

mj′ (p) ̸=mj(p)

πmj(p)jπmj′ (p)j
′

. The C stands for “congestion”, because the part of the improvement path where

players shift between tied outcomes resembles a congestion game. Similarly to σ and

ϕ variables above, let τK(p) = minp′∈ΦK(p) C(p
′) for changes in C when players in K

move.

A.2. Proofs of Propositions 1 and 2. For the proofs of the main results we will

separately consider the bidders who are buying some good T (p) and the rest of the

buyers B \ T (p). The next lemma deals with the former, simpler case when the

deviating buyer is buying some good in p. Since the move to p′ is an improvement,

she has to be buying some good in p′ as well, i.e. k ∈ T (p) and then k ∈ T (p′).

Lemma 2. Take a scheduler f with S ≺f B, an action profile p, f(p) = k ∈ B and

any profile p′ that is a better response for buyer k from p. Suppose also that k ∈ T (p)

and thus also k ∈ T (p′). Then

(i) If hik − pBik < hi′k − p′Bi′k then both FBR
k (p) > FBR

k (p′) and Fk(p) > Fk(p
′),

(ii) If hik − pBik ≥ hi′k − p′Bi′k then C(p) < C(p′).

Proof. Let mk(p) = i and mk(p) = i′. Since by construction ϕ
S∪{j∈B,j⪯fk}
k (·) is non-

increasing in better responses of k ∈ S ∪ {j ∈ B, j ⪯f k}, it does not increase in p′
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by Lemma 1. Similarly, since by construction ϕ
T (p)∪S
k (p) is non-increasing in better

responses of k ∈ T (p) ∪ S, it does not increase in p′ by Lemma 1 as well. We must

then have FBR
k (p) ≥ FBR

k (p′) and Fk(p) ≥ Fk(p
′). We now consider the two cases

separately.

(i) Suppose first that hik−pBik < hi′k−p′Bi′k. Then ϕ
S∪{j∈B,j⪯fk}
k (p) ≥ ϕ

S∪{j∈B,j⪯fk}
k (p′) ≥

hi′k − p′Bi′k > hik − pBik, and thus FBR
k (p) > 0 and FBR

k (p) > FBR
k (p′). For better

responses Fk(p) > Fk(p
′) follows by the same argument.

(ii) Suppose now instead that hik−pBik ≥ hi′k−p′Bi′k. Note that Uk(p
′) =

πi′k(p)∑
j∈Ti′

πi′j
(hi′k−

pBi′k) and Uk(p) =
πik(p)∑

j∈Ti
πij(p)

(hik − pBik). For p′ to be a better response for k we

must have Uk(p) < Uk(p
′), and thus πik(p)∑

j∈Ti
πij(p)

<
πi′k(p)∑
j∈Ti′

πi′j
or πik(p)

∑
j∈Ti′

πi′j <

πi′k(p)
∑

j∈Ti
πij(p). At the same time

C(p′)− C(p) = 2

πi′k(p)
∑
j∈Ti

πij − πik(p)
∑
j∈Ti′

πi′j

 ,

which is therefore positive and so C(p) < C(p′) as required.

□

The next lemmas will be useful for the other case when the deviating buyer was

not buying a good in p. This is the ”on-path” part of the proof for the best-response

sequence that behaves similarly to the auction in Demange et al. (1986).

Lemma 3. Take a scheduler f with S ≺f B, and an action profile p, f(p) = k ∈

B \ T (p). Then in any profile p′ that is a better response for k in p:

(i) σS
i (p

′) ≥ σS
i (p) for any i ∈ S

(ii) if σS
i (p

′) = σS
i (p) for all i ∈ S then C(p) < C(p′).

Proof. Either there is some other buyer j′ ∈ B who bids more than k in p for mk(p)

with pBmk(p)j′
≥ pBmk(p)k

or there is no trade with pSmk(p)
> pBmk(p)j

and maxj∈B pBmk(p)j
≤
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cmk(p). Then k either became the highest bidder with a higher bid, the highest bidder

j′ is unchanged, or the good is not sold. In any of these cases if the seller of the good

has a deviation, it is to increase the price. Therefore, (i) holds.

Moreover, if k matched the current price pSi = σS
i (p), and thus σS

i (p
′) = σS

i (p) for

all i ∈ S, then (ii) must be true by definition of C since T (p′) = T (p)∪ k, i.e. the set

T (p) has expanded while no winning buyers changed for other goods. □

Lemma 4. Take a scheduler f with S ≺f B. Suppose also that f(p) = j ∈ B and let

p′ be an improvement for j from p that respects f . If σS
i (p) > σS

i (p
′) for some i ∈ S

then maxi∈S(hij − σS
i ) > hmj(p)j − pBmj(p)j

.

Proof. For any seller i ∈ S to decrease the price in some state after p′, the highest

bid for her good has to be above the cost but below p′Si . Since f(p) = j ∈ B,

σS
i (p) = pSi and either maxj′∈B p′Bij′ < p′Si = pSi = maxj′∈B pBij′ or maxj′∈B pBij′ ≤

ci < maxj′∈B p′Bij′ . In other words, the highest bid should have decreased, or some

buyer was the first to offer a bid above the seller’s cost. The latter case cannot be

an improvement for the buyer j since the good is not sold and her payoff is zero.

Therefore, maxj′∈B p′Bij′ < maxj∈B pBij′ . Then the buyer j was the unique top bidder

for i and maxi∈S(hij − σS
i ) ≥ Uj(p

′) > Uj(p) = hmj(p)j − pBmj(p)j
. □

The next lemma shows that if no non-tied player wants to switch good in some set

of players K, then prices and bids will continue rising until an equilibrium is reached

or a player not in K moves. This effectively separates the adjustments of top bidders

from the bidding wars.

Lemma 5. Take an action profile p and a scheduler f with S ≺f B Suppose maxi∈S(hij−

σS
i ) ≤ hmj(p)j − pBmj(p)j

for any j in some set of buyers K. Then in any state p′ such

that there is an improvement path ρ = (p, ...p′) ∈ P(p) that respects f and such that

f(p̂) ∈ K for all p̂ ∈ ρ, p̂ ̸= p′:
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(i) For any i ∈ S, σS
i (p) ≤ σS

i (p
′),

(ii) max(0,maxi∈S(hij−σS
i (p))) ≥ max(0,maxi∈S(hij−σS

i (p
′))) for any j ∈ B, j ⪯f

k,

(iii) maxi∈S(hij − σS
i (p

′))) ≤ (hm(j)j − p′Bm(j)j) for any j ∈ B, j ⪯f k,

Proof. By induction. The plan for the proof that the three conditions hold for any

profile p′ ∈ ρ, with every condition implying the next.

Let p1 = p, and notice that the three conditions above hold for p1. Suppose the

lemma is true for all profiles in ρ = (p1, p2, ...) up to some pl. We will show that

the lemma holds for the next profile pl+1 as well, if such profile exists. If we had

k /∈ K then pl would have been the last profile in ρ. If instead f(pl) ∈ S ∩K then

σS
i (p) ≤ σS

i (p
l) by construction. The remaining case is f(pl) ∈ B ∩K. By Lemma 4

since (iii) holds for pl, (i) follows for pl+1.

It is easy to see that from (i) it follows that

max(0,max
i∈S

(hij − σS
i (p

l+1))) ≤ max(0,max
i∈S

(hij − σS
i (p

l)))

for any j ∈ B ∩K. That is, the best possible trade (ignoring the ties) is no better in

pl+1 than in pl for any j ∈ B. This implies part (ii).

For j = f(pl) we must have maxi∈S(hij − σS
i (p

l+1))) ≤ (hm(j)j − p
(l+1)B
m(j)j ), otherwise

she is not playing the best response in pl+1. For any other buyer j ∈ K ∩B, j ̸= f(pl)

the action has not changed, i.e. plBj = p
(l+1)B
j and thus by (ii) for these players

we also have maxi∈S(hij − σS
i (p

l+1)) ≤ maxi∈S(hij − σS
i (p

l) ≤ (hm(j)j − plBm(j)j) =

(hm(j)j − p
(l+1)B
m(j)j ) for any j ∈ K ∩B. By induction this implies (iii).

□

We are now ready to prove Proposition 1.

Proof of Proposition 1. The goal of the proof is to introduce an (incomplete) acyclic

total ordering ◁BR such that the states in any improvement path that respects a local
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scheduler f can be ordered by ◁BR. Define ◁BR as the following lexicographic ordering

on admissible action profiles p: p′ ◁BR p if either

(a)


FBR
j′ (p) > FBR

j′ (p′) for some j′ ∈ B,

FBR
j (p) = FBR

j (p′) for all j ∈ B, j ≺f k,

or

(b)


FBR
j (p) = FBR

j (p′) for all j ∈ B,

σS
i (p) ≤ σS

i (p
′) for all i ∈ S,

σS
i (p) < σS

i (p
′) for some i′ ∈ S,

or

(c)


FBR
j (p) = FBR

j (p′) for all j ∈ B,

σS
i (p) = σS

i (p
′) for all i ∈ S,

C(p) < C(p′)

or

(d)



FBR
j (p) = FBR

j (p′) for all j ∈ B,

σS
i (p) = σS

i (p
′) for all i ∈ S,

C(p) = C(p′)

FBR
i′ (p) > FBR

i′ (p′) for some i′ ∈ S,

FBR
î

(p) = FBR
î

(p′) for all î ∈ S, î ≺f i′.

That is, the profiles are sorted according to components for buyers FBR
j , prices σi,

tie-breaking component C, and sellers’ components FBR
i in this order of importance.
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Consider a BR-improvement path ρ = (...p, p′) that respects f . We need to show

that p ◁BR p′.

Suppose first that the improving player is a seller, f(p) = k ∈ S. In any profile p

where non-zero payoff for k is possible she has a unique best response pSk = maxj∈B pBij.

Since ϕj(·) is non-increasing in sellers’ better responses for any buyer j ∈ B, we have

ϕj(p) ≥ ϕj(p
′) for all j ∈ B by Lemma 1. In turn, since the seller’s price only enters

FBR
k′ (·) through ϕ, this implies that FBR

k′ (p′) ≤ FBR
k′ (p) for all k′ ∈ B∪(S\f(p)). Since

σS
i for any i ∈ S is non-decreasing in seller k’s responses by Lemma 1, σS

i (p) ≤ σS
i (p

′).

Moreover, since p′ must be an improvement, Tk(p
′) ⊆ Tk(p) and thus C(p) ≤ C(p′).

For seller k to have a better response at p it is necessary that pSk ̸= maxj∈B pBkj. Thus,

FBR
k (p) > FBR

k (p′) and, either by part (d) or by one of the conditions in the other

parts, p′ ◁BR p.

Now suppose that the improving player is a buyer, f(p) = k ∈ B. By construction

ϕ
S∪{j′∈B:j′⪯f j}
j of any j ∈ B, k ≺f j is non-increasing in better responses of k and

ϕ
S∪{j′∈B:j′⪯f j}
j (p′) ≤ ϕ

S∪{j′∈B:j′⪯f j}
j (p) by Lemma 1. Moreover, since pBj = p′Bj for all

such j ∈ B, k ≺f j we also have FBR
j (p) ≥ FBR

j (p′). Note also that for the new action

profile to be a better response, it must be that k ∈ T (p′).

We will continue with two cases:

(1) Suppose buyer k does not have the winning bid in p, that is k ∈ B\T (p). Then

in p′ it must be that maxi∈S(hik−σS
i (p

′)) ≤ (hm(k)k−p′Bm(k)k) because k played

a best response. At the same time since f(p) = k, maxi∈S(hij − σS
i (p))) ≤

(hm(j)j − pBm(j)j) for any j ∈ B, j ⪯f k. Moreover, since at p′ all bids are

the same and buyer k’s bid is no less than in p, σS
i (p

′) ≥ σS(p) and thus

maxi∈S(hij − σS
i (p

′)) ≤ (hm(j)j − p′Bm(j)j) for any j ∈ B, j ⪯f k. Thus, because

ΦS∪{j′∈B:j′⪯f j} ⊆ ΦS∪{j′∈B:j′⪯fk} for any j ⪯f k, part (iii) of Lemma 5 for

K = S ∪ {j′ ∈ B : j′ ⪯f k} implies FBR
j (p′) = 0 for any j ⪯f k. If
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FBR
j (p) > FBR

j (p′) for some j ⪯f k then p′ ◁BR p by part (a). Suppose instead

that FBR
j (p) = FBR

j (p′) for all such j. Let the current highest bidder for the

good mk(p
′) be j′ ∈ B. By Lemma 3 one of the two cases must occur in p′.

Either buyer k bids higher than j′ and the highest bid for that good is higher

in p′ or she bids the same as j′, but C(p) < C(p′). In both cases either by part

(b) or by part (c) again p′ ◁BR p.

(2) Suppose now instead that buyer k is buying both in p and p′, that is k ∈

T (p), k ∈ T (p′). By Lemma 4, if σS
i (p

′) < σS
i (p) for some i ∈ S then

maxi∈S(hik − σS
i (p)) > hmk(p)j − pBmk(p)j

and then since k has to play a best

response in p′, maxi∈S(hik − σS
i (p

′)) = hmk(p′)j − pBmk(p′)j
> hmk(p)j − pBmk(p)j

.

However, then by Lemma 2, FBR
k (p′) > FBR

k (p) and by part (a), p′ ◁BR p. If

this is not the case then σS
i (p

′) ≥ σS
i (p) and by Lemma 2, FBR

k (p′) < FBR
k (p)

or C(p) < C(p′) and, by part (a), part (b) or part (c), p′ ◁BR p.

Therefore, for any ρ that respects f we have p′ ◁BR p. Finally since by construction

◁BR is acyclic, there is an associated f -potential function F : F (p′) < F (p) iff p′◁BRp.

This in turn implies that any market game respects every such local scheduler f by

Theorem 9 in Apt and Simon (2015).

□

We now prove the result for better responses. All lemmas above apply to the better-

response case. The only effect that is not present is that the Fk(p) is not necessarily

zero after an improvement by k ∈ B \ T (p), because it does not have to be the best

response. This fact is used in the proof of Proposition 1 above. For better responses

we ensure that f schedules k to move again until she reaches the best response.

Proof of Proposition 2. Let the set T̄ (p) ⊆ T (p) for any profile p include all buyers

that are in T (p) and have maxi∈S(hik − σS
i (p)) > (hm(k)k − pBm(k)k). Take a scheduler

f that prioritizes players in this order: S ≺f T̄ (·) ≺f T \ T̄ (·) ≺f B \ T (·)
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Define ◁ as the following lexicographic ordering on admissible action profiles p:

p′ ◁ p if either


σT̄∪S
i (p) ≤ σT̄∪S

i (p′) for all i ∈ S,

σT̄∪S
i′ (p) < σT̄∪S

i′ (p′) for some i′ ∈ S,

(a)

or 
σT̄∪S
i (p) = σT̄∪S

i (p′) for all i ∈ S,

τ T̄∪S(p) < τ T̄∪S(p′),

(b)

or

(c)


σT̄∪S
i (p) = σT̄∪S

i (p′) and

τ T̄∪S(p) = τ T̄∪S(p′) ,∑
j∈B Fj(p) >

∑
j∈B Fj(p

′)

or

(d)



σT̄∪S
i (p) = σT̄∪S

i (p′) and∑
j∈B Fj(p) =

∑
j∈B Fj(p

′)

τ T̄∪S(p) = τ T̄∪S(p′) ,

C(p) < C(p′) ,
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or

(e)



σT̄∪S
i (p) = σT̄∪S

i (p′), and∑
j∈B Fj(p) =

∑
j∈B Fj(p

′),

τ T̄∪S(p) = τ T̄∪S(p′) ,

C(p) = C(p′) ,

Fi′(p) > Fi′(p
′) for some i′ ∈ S,

Fî(p) = Fî(p
′) for all î ∈ S, î ≺f i′.

That is, the profiles are sorted according to prices σT̄∪S
i , tie-breaking component

τ T̄∪S that is non-decreasing in better responses of T̄∪S, the sum
∑

j∈B Fj, tie-breaking

component C, and sellers’ components FBR
i in this order of importance.

Consider a BR-improvement path ρ = (...p, p′) that respects f . We need to show

that p ◁BR p′.

Suppose first that the improving player is a seller, f(p) = k ∈ S. Since the sellers

again move first according to f , the argument for k ∈ S is unchanged from Proposition

1. In any profile p where non-zero payoff for k is possible, a seller has a unique best

response pSk = maxj∈B pBij. Since ϕj(·) is non-increasing in sellers’ better responses for

any buyer j ∈ B, we have ϕj(p
′) ≤ ϕj(p) for all j ∈ B by Lemma 1. In turn, since

the seller’s price only enters Fk′(·) through ϕ, this implies that Fk′(p
′) ≤ Fk′(p) for

all k′ ∈ B ∪ (S \ f(p)). Since σT̄∪S
i and τS∪T̄i are non-decreasing in sellers’ responses

by Lemma 1, σT̄∪S ≤ σT̄∪S and τ T̄∪S(p) ≥ τ T̄∪S(p′). Moreover, since p′ must be an

improvement, Tk(p
′) ⊆ Tk(p) and thus C(p) ≤ C(p′). For seller k to have a better

response it is necessary that pSk (p
′) ̸= maxj∈B pBkj(p

′). Thus, Fk(p
′) < Fk(p), and,

therefore either by part (e) or by one of the conditions in the other parts, p′ ◁BR p.

Now suppose that the improving player is a buyer, that is f(p) = k ∈ B.
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Note again that for the new action profile to be a better response, it must be that

k ∈ T (p′).

We will continue the proof by cases:

(1) Suppose buyer k does not have the winning bid in p, that is k ∈ B \ T (p).

Since f(p) = k, maxi∈S(hij − σS
i (p))) ≤ (hm(j)j − pBm(j)j) for any j ∈ T (p) \ k.

Moreover, since at p′ all bids are the same and buyer k’s bid is no less than

in p, σS
i (p) ≤ σS

i (p
′) and thus maxi∈S(hij − σS

i (p
′))) ≤ (hm(j)j − p′Bm(j)j) for

any j ∈ T (p) \ k. Let p1 be the first state after p with f(p) /∈ S. Then in p1

either T̄ (p) = {k} and f(p1) = k or T̄ (p) = ∅. In the first case k moves again.

Player k continues to move until maxi∈S(hik − σS
i (p̄))) ≤ (hm(k)k − p̄Bm(k)k)

and T̄ (p) = ∅ and the sellers finish moving. This has to happen eventually

in some state p̄ because by Lemma 2 either (hm(k)k − p̄Bm(k)k) or C(·) increases

and both are bounded. At the same time σS
i (p) ≤ σS

i (p̄) since other bids

are unchanged and the bid of k is no less than the highest bid for mk(p̄).

Moreover, if σS
i (p) = σS

i (p̄) for every i ∈ S, it must be that C(p) < C(p̄) by

Lemma 3. Thus, σS∪T̄ (p′) = σS(p̄) ≥ σS∪T̄ (p) and if it holds with equality

then τS∪T̄ (p′) = C(p̄) > τS∪T̄ (p) = C(p). Thus, by part a or b, p′ ◁BR p.

(2) Suppose now instead that buyer k is buying both in p and p′, that is k ∈

T (p), k ∈ T (p′). By construction ϕS∪T
j of any j ∈ B is non-decreasing in

better responses of k and ϕS∪T
j (p′) ≤ ϕS∪T

j (p) by Lemma 1. Moreover, since

pBij = p′Bij for all i ∈ S and all j ∈ B \ k we also have Fj(p) ≥ Fj(p
′) for any

j ∈ B \ k. If k ∈ T̄ (p) then, since σS∪T̄
i and τS∪T̄i are non-decreasing in better

responses of S∪T̄ , by Lemma 1 σS∪T̄
i (p) ≤ σS∪T̄

i (p′) and τS∪T̄i (p) ≤ τS∪T̄i (p′). If

instead k ∈ T (p)\T̄ (p) then by Lemma 4 σS∪T̄
i (p) ≤ σS∪T̄

i (p′) and τ(p) = C(p).

As σS(p) ≤ σS(p′), T̄ (p′) = {∅} and therefore τ(p′) = C(p′). At the same time
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by Lemma 2, FBR
k (p′) < FBR

k (p) or C(p) < C(p′). Thus, either by part (c) or

part (d) or by other parts, p′ ◁BR p.

Therefore, for any ρ that respects f we have p′ ◁ p. Finally since by construction

◁ is acyclic, there is an associated f -potential function F : F (p′) < F (p) iff p′ ◁ p.

This in turn implies that any market game respects every such state scheduler f by

Theorem 9 in Apt and Simon (2015).

□

Appendix B. Characterization of equilibria

In this appendix we present the characterization of the ”sinks” of the convergence

process, i.e. the Nash equilibria of the market game.

B.1. Competitive equilibria. While we do not focus on competitive behavior, we

will use competitive equilibria to characterize and narrow down the set of Nash equi-

libria.

A competitive equilibrium for the economy (h, c) is a pair (y, p̃), where

y = ((yi)i∈S, (yj)j∈B) ∈
∏
i∈S

Yi ×
∏
j∈B

Yj

and p̃ = (p̃i)i∈S ∈ RM
+ such that

(1)

max
i∈S

(yijhij)−
∑
i∈S

p̃iyij ≥ max
i∈S

(y′ijhij)−
∑
i∈S

p̃iy
′
ij

(p̃i − ci)yi ≥ (p̃i − ci)y
′
i for all y

′
i ∈ Yi, for all i ∈ S, and∑

j∈B

yij = yi for all i ∈ S.

The first set of conditions represent utility maximization by buyers and encode the

assumption that buyers can enjoy at most one good. The second set of conditions
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represent profit maximization by the sellers. The third set of conditions includes the

market clearing conditions for each of the goods.

B.2. Nash equilibria. To describe the set of Nash equilibria of the market game,

note that for every subset S ′ ⊆ S (including the empty set), we can define a sube-

conomy (h′, c′) for goods and sellers S ′ and buyers B. Let (y′, p̃′) be a competitive

equilibrium for any such economy, where

y′ = ((y′i)i∈S′ , (y′j)j∈B) ∈ YS′,B ≡
∏
i∈S′

Yi ×
∏
j∈B

Yj and p̃′ = (p̃′i)i∈S′ ∈ R|S′|
+

With a slight abuse of notation, for any y ∈ YS′,B, let

x(y) ≡ (x ∈ X : xij = y′ij if i ∈ S ′ and j ∈ B, and xi′j = 0 if i′ /∈ S ′ and j ∈ B).

Note that if x(y′) ∈ F (p) for some bid profile p = (pB1 , . . . , p
B
N , p

S
1 , . . . , p

S
M) such that

y′i′j = 1 ⇒ pSi = pBij = p̃′i for every i′ ∈ S ′ and j ∈ B,

then x(y′) induces the same allocation than the competitive equilibrium (y′, p̃′); that

is, it induces the same assignment and the same money transfers than (y′, p̃′) for every

i ∈ S ′ and j ∈ B, with any other seller i′ /∈ S ′ left unassigned.

We say that a bid profile p induces the same allocation than (y′, p̃′) if Π(p) is a

singleton satisfying Π(p) = {x(y′)}, and moreover, for every i′ ∈ S ′ and j ∈ B such

that y′i′j = 1, we have pSi = pBij = p̃′i.

The theorems in this section show that the Nash equilibria generally correspond

to competitive equilibria of some subeconomy. In other words, a Nash equilibrium is

either a competitive equilibrium for the whole economy or a competitive equilibrium

provided that some markets fail to open due to miscoordination. This largely mirrors

the semi-Walrasian equilibria in Mas-Colell (1982). The only complication is caused

by the tie-breaks that slightly expand the set of Nash equilibria in terms of prices.
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More precisely, the set of matchings resulting from Nash equilibria is the same as

the set of matchings of competitive equilibria for some subeconomy, but this result

requires our Assumption 2 for coarse space. The Nash equilibrium prices don’t have

to be competitive, but are always within ϵ = 1 from them.

We start with the “competitive =⇒ Nash” direction, which is straightforward.

This and the other results in this section are independent of tie-breaking rules. In

particular, note that Π(p) is a singleton below.

Theorem 1. Let (y′, p̃′) be a competitive equilibrium for some economy (h′, c) consist-

ing of goods S ′ ⊆ S and such that p̃′ ∈ ZM . Then there is a bid profile p that induces

the same allocation, prices, and payoffs in (possibly one of many) Nash equilibria of

the strategic market game for the larger economy {h, c}.

Proof. To prove the theorem, consider p such that

pSi =

{
p̃′i if i ∈ S ′

κ if i /∈ S ′

for some κ > maxi∈S,j∈B hij, and

pBij =

{
p̃′i if y′ij = 1
0 otherwise

.

While the assignment x(y′) makes zero surplus, every other assignment makes zero

or negative surplus, and moreover the assignment above ray-dominates every other

zero-surplus assignment. Hence, Π(p) = {x(y′)}, as desired.

It is straightforward to check that, since ask prices for goods such that i ∈ S ′ are

competitive and prices for goods i /∈ S ′ are prohibitively expensive, no buyer has an

incentive to deviate from p. Similarly, since bid prices for goods such that i ∈ S ′ are

competitive, and prices for goods i /∈ S ′ are zero, no seller has an incentive to deviate

from p. □
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The converse is almost true, i.e. there are no Nash equilibria that are too far away

from competitive outcomes. However, the discrete formulation can distort outcomes a

little. Without Assumption 2, we can only guarantee competitiveness by adjusting the

payoffs by ϵ. In particular the following theorem is true with or without Assumption

2.

Theorem 2. Let x ∈ Π(p) with π(x) > 0 and suppose p ∈ ZM is a Nash equilibrium

for a strategic market game for some economy {h, c} with goods S. Then there is a

competitive equilibrium (y′, p̃′) for some subeconomy (hϵ, c′) for goods S ′ ⊂ S, where

hϵ
ij ∈ {hij, hij + ϵ} for all i ∈ S ′, j ∈ B that induces the same allocation as x with the

same prices p̃′i = pSi for any i ∈ S ′.

Proof. Note first that the surplus has to be zero in any Nash equilibrium:

∑
i∈S

∑
j∈B

xij(p
B
ij − pSi ) = 0 for all x ∈ F (p).

If, on the contrary, for some outcome x and some j ∈ B and i ∈ S, xij = 1 and

pBij > pSi , then seller i has a profitable deviation in p to p̃′Si = pSi + 1. Then x is

still preferable for the clearing house due to the ray-dominance assumption, and in

all outcomes in p seller i is selling her good for a higher price of pSi + 1. A the same

time a negative surplus cannot be chosen by the clearing house, i.e. it is not in Π(p).

Hence, xij = 1 implies pSi = pBij, and every possible match makes a zero surplus.

Let S ′ be the subset of sellers whose goods are assigned by x, let y′ be the solution

to x(y′) = x, and let p̃′ = (pSi )i∈S′ . We claim that (y′, p̃′) is a competitive equilibrium

for the subeconomy (hϵ, c′) for goods S ′ and hϵ
ij = hij + 1 if xij = 1 and hϵ

ij = hij

otherwise.

To see that this is a competitive equilibrium, note first that market clearing is

guaranteed by the definition of Π(p). Profit maximization for each seller i at the

given price pSi is guaranteed by the fact that the dominated strategies pSi < ci are
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disallowed. Moreover, since p is a Nash equilibrium, pSi ≥ ci so that selling at the

price pSi is at least as good as not selling even without this restriction under any

market clearing rule.

Finally, we claim that each buyer j ∈ B maximizes utility by choosing y′j given

prices p̃′. For suppose not; then one of the following must hold:

(i) xij = 1 for some i ∈ S ′ but there is i′ ∈ S ′ such that hϵ
i′j − pSi′ ≥ hϵ

ij − pSi + 1,

(ii) xij = 0 for all i ∈ S ′ but there is i′ ∈ S ′ such that hϵ
i′j − pSi′ ≥ 1.

In case (i), since xij = 1 we have hi′j − pSi′ ≥ hij − pSi + 2 and buyer j can deviate

to p′Bi′j = pSi′ + 1 and p′Bi′′j = 0 for all i′′ ̸= i. After the deviation, the clearing house

should match j and i′ since every other match makes zero or negative surplus.

Similarly, in case (ii), buyer j can deviate to p′Bi′j = pSi′ for some positive reward

from a tie. The clearing house should match j and i′ after the deviation with some

positive probability. Finally, since no payoffs have decreased, no players are playing

their dominated actions.

Hence, in each of the two cases, p cannot be a Nash equilibrium. □

This is of course not very satisfying, since we had to pay extra ϵ to every matched

buyer to ensure competitiveness. Another problem is that without extra assumptions,

the Nash equilibrium matchings don’t generally have to be competitive. While the

matchings are competitive in the perturbed game for (hϵ, c′), they are not necessar-

ily competitive in the original game for (h, c′). This is exactly the reason for the

Assumption 2.

The following theorem refines the previous result under Assumption 2, stating

that all Nash equilibrium matchings are also competitive equilibrium matchings. So

the only adverse effect of discrete bids is an ϵ change in some prices away from the

competitive equilibrium.
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Theorem 3. Under Assumption 2, if x ∈ Π(p) with π(x) > 0, and p is a Nash

equilibrium with pS ∈ Z for some strategic market game for economy {h, c} with

goods S, then there is a competitive equilibrium (y′, p̃ϵ) for some subeconomy (h′, c′)

for goods S ′ ⊆ S that induces the same allocation as x with prices p̃ϵi ∈ [pSi , p
S
i + ϵ] for

any i ∈ S ′.

Proof. Define pϵ as a vector where for any j ∈ B and i ∈ S ′ as p̃ϵi = 2z, where z ∈ Z

is the smallest integer such that p̃ϵi ≥ pSi . That is, we adjust prices up by ϵ so that

they are on the grid for valuations.

The argument is almost the same as the previous theorem, except we shift prices

instead of valuations. The market clearing is again ensured by the construction of

Π(p) and the sellers are optimizing since p̃ϵ ≥ pSi ≥ ci. It remains to show that the

buyers are optimizing.

We therefore claim that each buyer j ∈ B maximizes utility by choosing y′j given

prices p̃ϵ. For suppose not; then one of the following cases must hold:

(i) xij = 1 for some i ∈ S ′ but there is i′ ∈ S ′ such that hi′j − p̃ϵi′ ≥ hij − pϵi + 1,

(ii) xij = 0 for all i ∈ S ′ but there is i′ ∈ S ′ such that hi′j − p̃ϵi′ ≥ 1.

In case (i), hi′j − p̃ϵi′ = hij − p̃ϵi + 1 is impossible by construction of p̃ϵ. Then if

hi′j − p̃ϵi′ ≥ hij − p̃ϵi + 2 buyer j can deviate to p′Bi′j = p̃ϵi′ + 1 and p′Bi′′j = 0 for all i′′ ̸= i

for an extra payoff of

(hi′j − pSi′)− UB
j (p) ≥ 1 > 0,

since UB
j (p) ≤ (hij − pSi ). After the deviation, the clearing house should match j and

i′ since every other match makes zero or negative surplus by the previous step.

Similarly, in case (ii), buyer j can deviate to p′Bi′j = pSi′ ≤ p̃ϵi′ for some positive

reward from a tie. The clearing house should then match j and i′ after the deviation

with positive probability.



36

Finally, since no payoffs have decreased, no players are playing their dominated

actions. Any buyer who was buying a good in the Nash equilbrium for some price pSi

has a non-negative payoff for the same good for the price p̃ϵ by Assumption 2.

Hence, in each of the two cases, p cannot be a Nash equilibrium.

□
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