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Abstract
This paper explores the price setting of demand-side flexibility, modelled as consumers’ voluntary 
load reduction, in distribution grids. It develops a long-term equilibrium optimization model with a 
bi-level setting for voluntary demand-side flexibility. In the Upper Level (UL), the Distribution System 
Operator (DSO) maximizes welfare by deciding the level of network investments and setting the price 
for demand-side flexibility. The DSO also sets the distribution network tariff in order to recover the 
network investment and flexibility costs from the Lower Level (LL) consumers. LL’s active residential 
and commercial consumers react to network tariffs and to the price offered for their flexibility by 
investing in rooftop solar and batteries and offering a certain volume of demand-side flexibility when 
requested by the DSO. The passive residential consumers also provide flexibility by decreasing their 
load, but they do not invest in rooftop solar or batteries. We find that voluntary demand-side flexibility 
increases welfare and allows significant network investment savings. We also find that the benefits 
can reach all types of consumers. Besides, it is opportune to apply price differentiation when setting 
the price for demand-side flexibility, where applicable.

Keywords
Bi-level modelling; Voluntary demand-side flexibility; Distribution network investment; Flexibility 
compensation; Prosumers



1. Introduction
Distribution grids will need to be expanded to accommodate increasing shares of renewable energy 
and keep up with the electrification of the transport sector (with electric vehicles) and the electrification 
of heating in buildings (with heat pumps). We can size future distribution grids based on the new 
consumption and production peaks that will emerge in different locations, or we can try to reduce 
peaks with price signals. Consumers receive multiple signals, such as signals from electricity market 
prices, network tariffs, and taxes and levies. In addition, DSOs started to contract flexibility. They can 
organize tenders for flexibility service providers, and they can also work with non-firm connection 
contracts for different types of customers. These contracts can be mandatory or voluntary. Both 
types of contracts have already been tested in different European countries (Beckstedde et al., 
2020), but many regulatory issues remain.

The regulatory issues include the coordination between TSOs and DSOs ((Hadush and Meeus, 
2018) and (Givisiez et al., 2020)), and the timing of flexibility tenders within the sequence of electricity 
markets (Meeus, 2020), the threat of strategic inc-dec games (Beckstedde et al., 2021), and the 
adaptation of the flexibility scheme to a specific context (J. P. Chaves et al., 2021). In this paper, we 
focus on another issue, which is the price setting for voluntary demand-side flexibility, modelled as 
voluntary reduction/curtailment of load. Spiliotis et al. (2016) and Abdelmotteleb et al. (2021) worked 
on voluntary demand-side flexibility, but they did not focus on price-setting. The first paper uses 
a single optimization with the price for flexibility as a parameter rather than a variable. The second 
paper also treats the price for flexibility as a parameter in what the authors refer to as an ad hoc 
model.

In this paper, we develop a long-term equilibrium optimization model with a bi-level set-up. In the 
Upper Level (UL), the Distribution System Operator (DSO) maximizes welfare by deciding on the 
level of network investments and setting the price for demand-side flexibility. The DSO also sets 
the network tariff at a level that allows recovering the network investment and flexibility costs from 
the Lower Level (LL). The LL’s active residential and commercial consumers react to the net-work 
tariffs and the price offered for their flexibility by investing in rooftop solar and batteries and offering 
a certain volume of demand-side flexibility when requested by the DSO. The passive resi-dential 
consumers also provide flexibility, but they do not invest in rooftop solar or batteries.

In recent years, the application of bi-level equilibrium models to the electricity sector has proven 
to be very insightful ((Gabriel et al., 2013) and (Dempe et al., 2015)). Bi-level models have also 
been used to study regulatory issues related to distribution network investments. This started with 
the debate on distribution tariffs. Several authors used the bi-level set-up to show how consumers 
react to different types of tariffs, such as fixed, volumetric or capacity-based tariffs, with different 
levels of locational and spatial granularity. These studies have highlighted the importance of cost-
reflective distribution tariffs to align consumers’ interest with the system needs ((Schittekatte et 
al., 2018), (Govaerts et al., 2021), (Schittekatte and Meeus, 2020), (Pediaditis et al., 2021), and 
(Hoarau and Perez, 2019)). The model we developed in our previous paper, Nouicer et al. (2021), 
was the first to include the option for the DSO to curtail demand for a fixed compensation in a bi-
level set-up. In that paper, we illustrated how demand-side flexibility and network tariffs could be 
complementary tools to save unnecessary network investments. However, we only considered 
a case with residential consumers, and we assumed that the DSO could curtail consumers for an 
ad-ministratively determined compensation. As it might not always be acceptable that the provision 
of demand-side flexibility is mandatory, we now consider a voluntary approach in this paper. In this 
voluntary approach, the DSO sets a price, and consumers then respond with the volume of flexibil-ity 
they are willing to offer at that price.

In other words, in this paper, we make a modelling contribution to the literature on bi-level equi-librium 
models that simulate the trade-off between flexibility and distribution network invest-ments. This model 
allows us to contribute to the regulatory debate on how to set the price for voluntary demand-side flexibility.



7 Robert Schuman Centre for Advanced Studies

Athir Nouicer, Leonardo Meeus and Erik Delarue

The remaining part of the paper is structured as follow. In section 2, we introduce the modelling 
approach and the mathematical formulation. In section 3, we detail and analyze the results of 
a numerical example. Finally, in the conclusion, we summarize our main findings and their policy 
implications.

2. Model: approach and mathematical formulation
We develop a stylized game-theoretical optimization model with a bi-level set-up ((Gabriel et al., 
2013) and (Dempe and Zemkoho, 2020)). In the UL, the DSO, considered as perfectly regulated, 
maximizes welfare. It decides on the network investment level and the compensation to be offered to 
consumers to trigger the necessary demand-side flexibility levels. The DSO also sets the magnitude 
of network tariffs that are predominantly capacity-based to recover the grid investment and flexibility 
costs. Consumers optimize their individual welfare levels in the LL and voluntarily offer flexibility 
based on the implicit (network tariffs) and explicit prices signals (market-based flexibility). They can 
be active and invest in DERs, rooftop solar PV and batteries, or passive with no possibility for such 
DER investments. Commercial consumers are also able to invest in DERs. The flow chart of the 
model underlying the proposed approach is shown in Figure 1.

Figure 1: Flowchart for the interaction between the UL and the LL

2.1. The Upper-level: the regulated DSO

The UL level optimization problem is a welfare maximization one, based on the decision variables: 
the compensation for flexibility as an alternative to network investment, comp, the magnitude of 
network tariff, being the capacity-based charge, cnt, and the fixed charge, fnt. The related objective 
function, Eq.1, is as follow:

Maximizes Netwelfare:

	 Max 		  GrossWelfare- TotalSystemCosts		                                                            (1)
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Where:

	 With:

	

The 𝑂𝑡ℎ𝑒𝑟𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝑠 are a fixed fee and do not interfere with the optimization process.

The gross welfare is calculated in Eq.2, which represents the actual electricity consumption, being 
the original demand (𝐷i,daytype,t) minus the flexibility procured levels (𝑞𝑓𝑙𝑒𝑥𝑖,𝑑𝑎𝑦𝑡𝑦𝑝𝑒,𝑡), multiplied by the 
Value of Lost Load (VoLL) and annualized by the weighting factor, WDTdaytype. PCi is the proportion 
of each type of consumer 𝑖. The original demand 𝐷i,daytype,t is indexed by consumer, 𝑖, hours of the 
representative day, 𝑡, and type of the representative day, 𝑑𝑎𝑦𝑡𝑦𝑝𝑒.

Eq.4 represents the total system costs that are the sum of four different elements. The aggregated 
energy costs are calculated by Eq.6 where 𝑞𝑤𝑡,𝑑𝑎𝑦𝑡𝑦𝑝𝑒,𝑖 is the electricity quantity withdrawn from the 
grid and 𝐸𝐵𝑃𝑡 is the corresponding withdrawal price, while 𝑞𝑖𝑡,𝑑𝑎𝑦𝑡𝑦𝑝𝑒,𝑖 is the electricity injected in the 
grid with 𝐸𝑆𝑃𝑡 the corresponding injection price.

The DER costs are calculated by Eq. 6 where 𝑖𝑠𝑖 is the investment in solar PV (in kWp) and 𝑖𝑏𝑖 the 
investment in batteries (in kWh) by consumer 𝑖. AICS and AICB are two parameters for annualizing 
investment costs in solar PV and batteries, respectively.

The flexibility revenue represents the welfare surplus coming from the flexibility sold by all the 
consumers and is calculated by Eq.7. It is equal to the aggregated flexibility revenue of Eq.3, 
and therefore, both terms are cancelled out in the UL objective function. Eq.8 represents the grid 
investment costs that are a function of the maximum network coincident utilization peak, 𝑐𝑃𝑒𝑎𝑘, and 
the parameter, IncrGridCosts, that is the cost of increase/decrease in the coincident peak per kW.

The 𝑐𝑃𝑒𝑎𝑘, being the maximum of the demand and injection peaks, is calculated via the following 
equations 9 to 11.
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The cost recovery of grid investment and flexibility procurement costs is imposed by the constraint 
in Eq.12. The regulated DSO sets the magnitude of the capacity and fixed components of the network 
tariffs to recover these costs.

2.2. The lower level: consumers

The LL represents the individual consumers’ optimization problems. They can be passive or active 
residential consumers, or commercial consumers in the latter part of the analysis. They react to 
the implicit price signal set via the DSO through the network tariffs and to the explicit one that is 
the demand-side flexibility compensation, also set by the DSO, and offer their flexibility in kWh 
accordingly. Active residential consumers and commercial ones can invest in DERs to maximize 
their individual welfare and be more independent from the electricity supplied via the grid. They can 
also choose to invest less in DERs if the set compensation is high enough that the revenues from 
demand curtailment outweigh the bill reduction benefits of investing in DER.

The LL optimization problem is expressed in Eq. 13 for each consumer:

	 Maximise       grossConsumerSurplusi – costsi                                                                                  (13)

The gross consumer surplus is composed of two components and expressed in Eq.14: the first 
corresponds to the value of electricity consumption for each consumer, and the second is the revenue 
from the flexibility that every consumer gets based on his offered levels.

The second part of the consumers’ objective functions is the total costs paid by each one. They are divided 
into four components, being energy costs, network charges, DER costs, and fixed costs. They are calculated 
in the following equations 15 to 17.

The fixed costs are a set of fees, e.g. VAT and taxes, that does not interfere with the LL optimization 
problems. The UL and LL remaining constraints are given in the appendix.
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3. Case study and results
This section first introduces the numerical example for the numerical example. Second, we present 
the results obtained for this study case.

3.1 Case study

Table 1: Parameters in the numerical example

Parameter Value
VoLL for residential consumers 9.6 €/kWh 
VoLL for commercial consumers 3.96 €/kWh
Annual demand for residential 
consumers 9785 kWh

Annual demand for commercial 
consumers 12055 kWh

Frequency of critical days 10
Default Load (normal days) Synthetic Load Profiles (SLP) 
Incremental network expansion costs 400 €/kW, no sunk grid costs
Solar PV investment cost 1100 €/kWp
Battery investment cost 150€/kWh

3.1.1 VoLL values

The VoLL is defined by the electricity Regulation (EU) 2019/943 as an ‘estimation in euro/MWh, of 
the maximum electricity price that customers are willing to pay to avoid an outage.’ In other words, it 
is the economic value that consumers put on electricity supply. For system operators, it is a reliability 
indicator that is used in grid planning (ACER, 2018). In 2020, ACER approved the methodology 
for calculating the VoLL developed by ENTSO-E (ACER, 2020). The methodology includes the 
possibility to define a sectoral VoLL, per type of consumers, residential and tertiary on the one hand, 
and commercial on the other hand.

Available studies for VoLL values’ estimation show that there are sectoral variations for VoLLs, 
in addition to the differences across Member States. For the residential sector, the values vary 
be-tween 1.5 €/kWh in Bulgaria to 22.94 €/kWh in the Netherlands. High values of VoLL are due, 
among other things, to the fact that consumers have a high electricity dependence, e.g. for leisure 
time. For the non-residential or commercial sector, the values vary between the Member States and 
within a Member State, depending on the type of industrial or commercial activity. For the transport 
sector, for instance, the values range between 2.06 €/kWh in Hungary and 39 €/kWh in Ireland. For 
the textile sector, the values range between 0.36 €/kWh in Malta and 3.75 €/kWh in Slovakia. This 
variation in the values is linked to the electricity dependence for realizing the pro-ductive output For 
our numerical example, we opted for a VoLL of 9.6 €/kWh for the residential sector and 3.96 €/kWh 
for the commercial sector. This ratio between the residential and commer-cial VoLL is in line with the 
values in Belgium, Austria, Germany (ACER, 2018). Other factors can also impact the VoLL levels, 
such as the existence of a notice for the interruption event and the dura-tion of that event. A notice 
of one-day ahead is translated into a VoLL reduction of about 50% for residential consumers and 
to a lesser extent for non-residential consumers (ACER, 2018). The im-pact of the different level of 
VoLL have been analyzed in the context of mandatory curtailment in Nouicer et al. (2021).

Apart from VoLL, other metrics could be used to assess how consumers value an uninterrupted 
electricity supply. Ozbafli and Jenkins (2016) analyze the households’ willingness-to-pay (WTP) 
for electricity supply.  CEER (2010) lists the guidelines to estimate the cost of electricity supply 
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interruptions using the WTP and the willingness-to-pay (WTA). Nevertheless an important difference 
between WTA/WTP and VoLL is that WTA/WTP are measurements of the monetary value for which 
consumers are ready to pay/accept to avoid/undergo a reduction of their supply, and are usually 
normalized per unit of time, e.g. they can be expressed in €/hour. In turn, VoLL is normalized per unit 
of energy, e.g. €/kWh of electricity (ACER, 2018). Converting WTA/WTP is possible through a division 
by the (average) electricity consumed per unit of time, e.g. per hour (London Economics, 2013). 
Nevertheless, this can be more challenging in practice due to the unavailability of disaggregated 
consumption data at consumer’s level as well as discrepancies between the values of WTA and WTP 
(CEER, 2010).

3.1.2 Demand parameters

We consider electricity load profiles for different days, i.e. a normal day and a critical day, and dif-
ferent consumers, i.e. residential and commercial consumers. We based our normal day profiles 
on the synthetic load profiles for the different types of consumers (Synergrid, 2019). For the critical 
days, which occur ten times a year, we magnified the consumption peaks of the normal day pro-
files. They represent days with high electricity consumption due to weather conditions or other non-
frequent behavior leading to increased use of electricity.

We consider an annual electricity demand per household of 9785 kWh for the residential sector 
and 12285 kWh for the commercial sector. These relatively high consumption levels for residential 
consumers are due, inter alia, to the critical days’ high demand shown in Figure 2. Annual electrici-
ty consumption varies between the countries worldwide, depending on the weather conditions and 
the use of electrical heating. In France, the average electricity consumption per household in the 1st 
quarter of 2020, was 4529 kWh (Fournisseurs d’électricité, 2021). Yet, for houses with a size of 120 
sq m, more adequate for installing DERs, the average annual consumption is 12000 kWh (ENGIE, 
2021).  With the current trends of electrification of end-uses and the penetration of elec-tric vehicles, 
the final electricity demand would increase by 8.5% between 2015 and 2030 in Eu-rope, according 
to Agora Energiewende (2019), and based on the European Commission scenarios. 

Figure 2: Profiles for normal and critical days for the different types of consumers
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The residential load profiles have the so-called ‘humped-camel shape’ with an evening peak that is 
higher than the  one at noon (Faruqui and Graf, 2018). The considered commercial consumers have 
a single peak in the middle of the day, around 1pm.



European University Institute

A bilevel model for voluntary demand-side flexibility in distribution grids

12

The contribution of residential demand to the system demand peak is important. In Europe, it 
contributes about 60% of the system peak (Torriti, 2020), while in some parts of the US, South 
Australia and New Zealand, it accounts for around 50% ((Gyamfi et al., 2013) and (EDF, 2013)). 
The contribution of the residential sector to the overall electricity demand is less important than its 
contribution to the peak. In Europe, it accounts for about one-third of the electricity demand (Torriti, 
2020). For the critical days, we selected load profiles of residential consumers with an evening 
peak of ~7 kW, while the day peak is ~6 kW. Commercial consumers in our simulations have 
a predominant day peak of ~6 kW. For the model runs executed with only residential consumers, we 
opted for a 50%-50% distribution between prosumers and passive consumers, which is a situation 
that is expected in the near future. For instance, in Belgium, De Villena et al. (2021) find that, under 
enabling technological and economic incentives, up to 85% of the potential prosumers would become 
actual prosumers in Wallonia when a capacity component-based network tariff is set. In the cases 
with active residential, passive residential and commercial consumers, we opted for 33% for each 
of the three.

3.1.3 DER parameters

Prosumers can invest in rooftop solar PV panels and battery storage to maximize their individual 
welfare. Regarding the investment costs, we opted for a value for AICS, that is the investment cost in 
solar PV, of 1100 €/kWp (JÄGER-WALDAU, 2019) and for AICB, that is the investment cost in battery 
systems, of € 150 per kWh of installed capacity (European Commission, 2020). These values are 
in line with the current reduction trends of DER investment costs. In our case study, prosumers can 
invest up to 4 kW in solar PV panels and 6 kWh in battery systems.

3.1.4. Grid-related parameters

In our long-term equilibrium model, there are no sunk costs, and grid investments are assumed to be 
100% driven by the coincident peak. This emphasizes the role of flexibility as an alternative for future 
investment in distribution grids. To set the value of the IncrGridCosts, we calculate the default grid 
costs, similar to MIT Energy Initiative (2016), which equals 400 €/kW. To recover the grid investment 
costs and the flexibility costs, the DSO sets the magnitude of the grid charges components. These 
charges are considered mostly capacity-based (cnt) with the possibility for the DSO to set up to 40€ 
of fixed grid charges (fnt).

3.2 Results

In this section, we first present the impact of different compensation levels for demand-side flexibility 
on the welfare and the different components of the invoice that consumers pay. We then let the model 
decide the optimal level of compensation. Subsequently, we look at the optimal under uniform pricing 
and under price discrimination. Finally, we do a sensitivity analysis in which we add an commercial 
consumer to the system to see how that changes the results.

3.2.1 Impact of different prices for demand-side flexibility

To understand the effects that drive the model towards a welfare-maximizing price for demand-side 
flexibility, we start by running the model iteratively for different compensation levels. In what follows, 
we explain what happens with three figures.

First, Figure 3 illustrates the evolution of gross welfare if we gradually increase the price for 
demand-side flexibility. The figure also illustrates the level of flexibility that is voluntarily offered 
by the consumers and procured by the DSO at these different prices (the volume of flexibility is 
expressed as a % of the total volume consumed in a year on the secondary y-axis). Note that gross 
welfare is the first term of Eq.1, which consists of two components: the consumers’ valuation of 
electricity consumption (dark blue area of each bar), and the income that the consumers receive by 
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offering flexibility (striped blue area of each bar). As expected, consumers offer more demand-side 
flexibility for higher levels of compensation, and their income from these services also increases.

Figure 3: Gross welfare and flexibility offered for different levels of compensation
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Second, Figure 4 illustrates the evolution of the invoice that consumers pay if we gradually increase 
the price for demand-side flexibility. The invoice consists of the energy sourcing costs, network 
charges, fixed charges, and annualized investment costs in DERs (solar PV and battery systems) 
minus the income from providing flexibility services.

In Figure 4, we show the level of network charges that are used to recover the network investment 
on the one hand and to recover flexibility costs on the other hand, in dotted bars and striped bars, 
respectively. The remaining part of the consumer invoice, being energy sourcing costs, the fixed 
charges, and the annualized investment costs in DERs, is shown in the dark blue area of the bars. 
Just like in the previous figure, this figure also includes the level of flexibility that is voluntarily offered 
by the consumers and procured by the DSO at these different prices. The figure reminds us that 
there are many interactions in this model. By offering a higher price for demand-side flexibility, the 
DSO can save network investments, which can help to lower network charges and increase the 
revenues consumers get from providing flexibility services. However, the DSO also allocates the 
costs of procuring flexibility via network tariffs to consumers. Therefore, the consumers’ payment for 
network charges increases for high flexibility prices. The net effect on network charges and the total 
bill of consumers is positive for low demand-side flexibility prices but becomes negative for higher 
prices, i.e. higher than 4 € in this case.

Figure 4: Consumers’ aggregated bill (y-axis) for different compensation prices (x-axis)
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Third, Figure 5, illustrates the evolution of the net welfare if we gradually increase the price for 
demand-side flexibility. Note that the welfare is the objective function of the DSO in the UL and 
calculated in Eq.1. What happens with the welfare is, of course, the combination of the above two 
effects on gross welfare and the total system costs or the (aggregated) invoice for consumers. In 
the numerical example that we modelled, the welfare-maximizing price for demand-side flexibility 
is just below 2 €/kWh  triggering 0.79% of voluntarily curtailed demand, as a percentage of their 
annual demand. This price is uniform for both types of consumers, referred to as uniform pricing for 
demand-side flexibility. We also notice that for a compensation equal to 0 €/kWh, the system welfare 
is close to the optimum level (Figure 5). In this case, consumers offer lower levels of demand-side 
flexibility (0.44%) to reduce network investment and consequently the network charges they pay. 
These limited levels of flexibility translate into a higher gross welfare (Figure 3), without impacting 
network charges part used to recover flexibility costs, explaining the close to optimum net system 
welfare.

Figure 5: System welfare for different levels of compensation
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3.2.2 Welfare-maximizing prices for demand-side flexibility: uniform pricing versus price 
differentiation

In what follows, we first present the detailed results for using demand-side flexibility under uniform 
pricing. Then we compare them with the results for price differentiation. Finally, we assess the impact 
of the pricing approach on the distribution of costs and benefits between the two residential consumer 
types.

First, Table 2 and Figure 6 show the output of the model under uniform pricing, which means that 
the passive and active consumers are offered the same price for flexibility services. The welfare-
maximizing price for demand-side flexibility is 1.94 €/kWh. This translates into a net welfare of 91003 
€ with a gross welfare of 93343 €, and costs of 2339 €. The consumers’ aggregated revenue for 
demand-side flexibility, paid by the DSO, is 151 €. The reason why the compensation is set at a level 
lower than VoLL is the fact that compensation revenues are recovered via network tariffs (Eq.12). 
When the DSO offers high compensation to consumers, the gross welfare increase (Figure 3) and 
so do network tariffs levels used to recover flexibility costs to a higher extent (Figure 4). This impacts 
negatively net welfare (Figure 5). The optimal level of compensation is set in a way that mobilizes the 
necessary flexibility from consumers to save network investment without heavily increasing network 
charges and consequently system costs.
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With this relatively limited compensation to curtail peak consumption during critical days, the DSO 
can save up to 50% of the network investments in our example. The active consumer, C1, provides 
slightly more of the total volume of demand-side flexibility than the passive consumer, C2, (53% 
versus 47%, for a flexibility revenue of €161.14 versus €142.03). Figure 6 illustrates the impact of 
the curtailment on the two types of consumers on a critical day. Prosumers invest in DERs (4 kW 
for solar PV and 6 kWh in batteries) and use their solar PV self-generated electricity to cover their 
day peak, while they use their battery storage to partly cover their evening peak. The voluntary 
curtailment happens both at the day and evening peak for the passive consumers. Both consumption 
peaks are reduced to the same level in our example.

Table 2: Results of the flexibility procurement

No flex Uniform pricing
C1 C2

Welfare (€) 90656 91003
Flex level - 0.79%
Annualized network 
investment € (per 
consumer)

2001 1000.25(-50%)

Compensation (€/kWh) - 1.94 
Flex offered per agent 53% 47%
Flex revenue per 
agent (€)

161.14 142.03

Figure 6: Load profiles for the different types of consumers: left: prosumers, right: passive 
consumers

Second, Table 3 and Figure 7 show the results of the model with price differentiation, which 
means that the DSO is allowed to offer a different price for the flexibility services of the passive 
and active consumers. The net welfare of the solution with price differentiation is higher than in the 
case with uniform pricing. Under uniform pricing, the compensation needed to manage the passive 
consumers’ peaks triggers bad behavior from the active consumers. The active consumers would be 
able to manage their own peaks with their PV and battery systems, but they anticipate that they can 
receive relatively high compensation for curtailment. With price differentiation, the DSO can offer an 
optimized lower compensation to the active consumers (0,23 €/kWh) than to the passive consumers 
(2,45 €/kWh). As illustrated in Figure 7, the most visible change is in the way the active consumers 
operate their batteries.
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Table 3: Comparison between a uniform and a differentiated compensation

Uniform Differentiated
C1 C2

Welfare 91003 91037
Flex level 0.79% 0.55%
Annualized network investment € 
(per consumer)

1000.25(-50%) 1199.00 (-46%)

Compensation (€/kWh) 1.94 0.23 2.45
Flex offered per agent 53% 47% 32% 68%
Flex revenue per agent (€) 161.14 142.03 7.92 178.27

Figure 7: Load profiles for the prosumer: left: uniform compensation, right: differentiated 
compensation

Third, Figure 8 compares the impact of the pricing approach on the distribution of costs and 
benefits between the two consumer types in our model. The academic literature on network tariffs 
concluded that cost-reflective distribution tariffs are more efficient, but not necessarily fair, see for 
instance Schittekatte and Meeus (2020) which measure fairness as increase in grid charges for 
passive consumers in comparison with a baseline  and Neuteleers et al., (2017). Most of the benefits 
of cost-reflective tariffs are for the active consumers that invest in PV and battery systems. However, 
the table below illustrates that demand-side flexibility can help reduce the gap between active and 
passive consumers. We assess fairness, here, as the change in the relative gap between active and 
passive consumers invoices compared to the case where no flexibility is contracted. In our example, 
the gap reduces from 1685 euro to 1206 euro if we introduce demand-side flexibility with uniform 
pricing, and the gap reduces further to 478 euro if we can apply price differentiation.

Note that this, of course, assumes that we would be able to mobilize passive consumers to 
participate in these demand-side flexibility schemes that the DSO sets up. We think that this is 
a reasonable assumption, at least for some of them. Investing in PV and battery is indeed more 
time and resource-consuming than signing up for a smart connection agreement or other types of 
demand-side management schemes.
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Figure 8: Consumers’ bill and investment costs under the different flexibility schemes

3.2.3. Sensitivity with a commercial consumer

Full price differentiation might not be feasible because it is difficult to distinguish passive and active 
residential consumers, and it might be considered discriminatory. For this reason, in what follows, 
we present an alternative that might be more feasible, which is to apply price discrimination for 
consumers connected at different voltage levels. To be able to run this sensitivity, we add a third type 
of consumer to the model, a commercial consumer with a VoLL equal to 3.96 €/kWh. Table 4 reports 
the results, where C1 refers to the prosumers, while C2 refers to passive consumers and C3 refers 
to commercial consumers. The findings are in line with the expectations. The results for demand-
side flexibility with voltage price differentiation are better than the results with uniform pricing, but 
worse than the results with full price differentiation. Note also that the commercial consumer has 
a different load profile from the residential consumers (see Figure 2). In our system, the system 
peak, however, coincides with the residential peak, which is why the price differentiation between 
voltage levels is less beneficial than price differentiation among residential consumers. Note finally 
that the commercial consumer can game the compensation scheme, similar to the active residential 
consumer, which is why the price for demand-side flexibility is so low, much lower than the VoLL.

Table 4: Results with residential and commercial consumers

No flex Flex with uniform pricing Flex with full price dif-
ferentiation

Flex with voltage price 
differentiation

C1 C2 C3 C1 C2 C3 C1 C2 C3
Net welfare 75150 75281 75315 75308
Flex level - 0.5% 0.3% 0.4%
Annualized 
network 
investment € 
(per consum-
er)

1469 849 (-43%) 1017 (-31%) 920 (-38%)

Compensa-
tion (€/kWh)

- 1.4 0.25 1.72 0.1 1.48 0.08

Flex offered 
per agent

- 49% 46% 5% 17% 77% 4% 54% 42% 3%

Flex revenue 
per agent (€)

109.4 102.9  11.85 4.16  125.5 0.7 101.6 79.42 0.5
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4. Limitation of the approach
In this section, we present some of the limitations of our approach that we identified, and we assess 
to which extent they underestimate or overestimate the potential of demand-side flexibility. The 
numerical results for our theoretical model depend on the data set considered. We use the obtained 
results to draw conclusions and show the impact of the associated parameters rather than finding 
exact values of general validity.

An example of overestimation is the demand profiles for residential consumers. Our data set 
uses similar load profiles of active and passive prosumers. This is translated into important flexibility 
levels procured from passive consumers. It could be argued that passive consumers consume less 
electricity than active ones. Yet, in our approach, we opt for average standardized profiles for normal 
days and critical days with higher consumption peaks, which happen a few times a year, for reasons 
that are similar for all types of consumers.

An illustration of underestimation is the load profiles of commercial consumers and their ability to 
invest in DER. In our approach, the commercial consumers can invest in rooftop solar PV panels 
to flatten their day consumption peak, which is triggered through the capacity-based network tariffs 
signals. Therefore the need to procure flexibility from commercial consumers is reduced as well as 
the related payment. Other types of consumers could be added, with different load profiles, such 
as commercial consumers. This may impact the flexibility offered by consumers, as they may have 
other types of load profiles.

However, the central role would remain the residential consumers for the uptake of demand-side 
flexibility due to important their contribution to the system demand peak.

5. Conclusion
In the conclusion, we summarize the paper’s main contributions and the related findings below. First, 
for the modelling contribution, to the best of our knowledge, we are the first to model a voluntary 
scheme for flexibility, as an alternative to distribution investment, where the DSO sets the price for 
demand-side flexibility and the consumers respond by offering their flexibility. We modeled a uniform 
pricing as well as a differentiated pricing approach for the compensation offered by the DSO. We 
also compared the findings to the case where no demand-side flexibility is procured.

Second, for the policy contribution, we find that a voluntary demand-side flexibility scheme 
improves welfare. We also find that the welfare gains are significantly higher if price differentiation 
for the compensation of demand-side flexibility is applied. If price differentiation is an option, active 
consumers are offered a lower compensation than passive ones, which significantly reduces gaming 
by the former. As price differentiation might be difficult to apply to residential customers, we also 
looked at the possibility to differentiate between commercial and residential consumers and found 
that it is opportune to do so. 

We also investigated how the welfare gains are distributed among different types of consumers. 
We wanted to know if the welfare gains are mainly for the active consumers, or also for the passive 
consumers. We found that a voluntary demand-side flexibility scheme reduces the fairness issue 
between the two types of residential consumers. If consumers that do not invest in DERs are activated 
via demand-side flexibility, they will also benefit from it. Also, we find that flexibility procurement with 
a differentiated compensation is fairer than a uniform one.
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Appendix

Appendix A: The MPEC model resolution

A1. MPEC Model formulation

SETS

i : 1,..,N: Consumers types, 1 for active and N for passive

t: 1,..,T: Time steps, hours, T=24h

Daytype: normal, critical

PARAMETERS (capitalized)

Upper level 

PCi: Proportion of consumer type i

VoLL: Value of lost load [€/kWh]

IncrGridCosts: Incremental annualized grid cost per kW, scaled per average consumer [€/kW]

Di,daytype,t: Original demand at (t, daytype) of consumer i [kW]

WDTdaytype: annuity factors for the different costs [-]

Lower Level

Dt: time step, as a fraction of 60 minutes [-]

MSi : Maximum solar capacity for consumer i [kW]

MBi : Maximum battery capacity for consumer i [kWh]

SYt,i: PV panel yield at time step t of consumer i [kWh/kWpeak]

EBPt: Energy price for buying electricity from the grid [€/kWh]

ESPt: Energy price received for injecting in the grid [€/kWh]

ICS: investment cost solar PV [€/kWp]

AFS: Annuity factor for solar PV investment

ICB : Investment cost battery [€/kWh]

AFB: Annuity factor for battery investment

BDRatio: Ratio of max power output of the battery over the installed energy capacity [-]

BCRatio: Ratio of max power input of the battery over the installed energy capacity [-]

ηout: Efficiency of discharging the battery [%]

ηin: Efficiency of charging the battery [%]
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VARIABLES (starting with lower-case letters)

Upper Level

cnt: Capacity component of the network tariff [€/kW]

fnt: fixed component of the network tariff [€/consumer]

comp: Compensation for flexibility set by the DSO (could be uniform or differentiated by consumer i  
[€/kWh]

c𝑃𝑒𝑎𝑘: The coincident peak demand resulting from the model optimization (the highest value of 
c𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑 and c𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛).

c𝑃𝑒𝑎𝑘𝐷𝑒𝑚𝑎𝑛𝑑: The coincident peak demand resulting from the model optimization

c𝑃𝑒𝑎𝑘𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛: The coincident peak injection resulting from the model optimization

grossWelfare: The gross system welfare created from electricity consumption [€]

totalSystemCosts: Total annualized system costs, scaled per average consumer [€]

s𝑦𝑠𝑡𝑒𝑚𝐺𝑟𝑖𝑑𝐶𝑜𝑠𝑡: Total annualized grid costs, scaled per average consumer [€]

s𝑦𝑠𝑡𝑒𝑚𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡𝑠: Total annualized energy costs, scaled per average consumer [€]

s𝑦stemDERCosts: Total annualized DER costs, scaled per average consumer [€]

Flexibilitycost: Total annualized flexibility costs, scaled per average consumer [€]

Lower Level

qwi,daytype,t: Energy withdrawn at (t, daytype) by consumer i [kW]

qii,daytype,t: Energy injected at (t, daytype) by consumer i [kW]

qflexi,daytype,t: Demand-side flexibility offered by consumers [kWh]

isi: Installed solar PV capacity by consumer i [kW] 

ibi: Installed battery capacity by consumer i [kWh]

qbouti,daytype,t: Discharge of the battery of consumer i at (t, daytype) [kW]

qbini,daytype,t : Charge of the battery of consumer i at (t, daytype) [kW]

soci,daytype,t: State of charge of the battery [kWh]

grossConsumerSurplusi: The gross system welfare created from electricity consumption for consumer 
i [€]

costsi: Annualized costs for consumer i [€]

energyCostsi: Annualized energy costs for consumer i [€]
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gridChargesi: Annualized grid charges for consumer i [€]

DERCostsi Annualised DER costs, for consumer i [€]

FULL CONSUMER CONSTRAINTS



European University Institute

A bilevel model for voluntary demand-side flexibility in distribution grids

24

A2. Model transformation

THE LAGRANGIAN FORMULATION

KKT conditions



25 Robert Schuman Centre for Advanced Studies

Athir Nouicer, Leonardo Meeus and Erik Delarue



European University Institute

A bilevel model for voluntary demand-side flexibility in distribution grids

26

Acknowledgments
The PhD research of Athir Nouicer is supported by the European Union’s INTERRFACE Horizon 
2020 project (grant agreement No 824330).

Authors contacts
Athir Nouicer

Florence School of Regulation, Robert Schuman Centre for Advanced Studies

European University Institute, Via Boccaccio 121, I-50133 Florence, Italy

Department of Mechanical Engineering, Division Applied Mechanics and Energy Conversion

KU Leuven, Celestijnenlaan 300 - post box 2421, B-3001 Leuven (Heverlee), Belgium

Email: athir.nouicer@eui.eu

Leonardo Meeus

Florence School of Regulation, Robert Schuman Centre for Advanced Studies

European University Institute, Via Boccaccio 121, I-50133 Florence, Italy

Vlerick Business School, Vlerick Energy Centre, Bolwerklaan 21, B-1210 Brussels, Belgium

Email: leonardo.meeus@eui.eu

Erik Delarue

Department of Mechanical Engineering, Division Applied Mechanics and Energy Conversion

KU Leuven, Celestijnenlaan 300 - post box 2421, B-3001 Leuven (Heverlee), Belgium

EnergyVille, Thor Park 8310, B-3600 Genk, Belgium

Email: erik.delarue@kuleuven.be


