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Abstract

We derive an approximation to the expectation of the likelihood ratio
test for cointegration in the vector autoregressive model. The expression
depends on moments of functions of random walk, which are tabulated by
simulation, and functions of the parameters, which are estimated. From
this approximation we propose a correction factor with the purpose of
improving the small sample performance of the test. The correction is
found explicitly in a number of simple models and the usefulness of the
correction is illustrated by some simulations experiments.



1 Introduction and models

In the vector autoregressive model the likelihood ratio test for cointegration rank
is the so called trace test derived by the technique of reduced rank regression,
Anderson (1951). The asymptotic distribution under the assumption of (1)
is derived by Johansen (1988, 1996) and Ahn and Reinsel (1990). There are
many studies that show that for small samples the size of the test is not well
approximated by the asymptotic value, see for example Cheung and Lai (1993),
Toda (1995), Gonzalo and Pitarakis (1999), and Haug (1996). Reimers (1992)
proposed a small sample correction based on degrees of freedom, and Hansen
and Rahbek (2000) employ ideas of profile likelihood to derive corrections of
the Dickey Fuller test.

In this paper we propose a correction factor to the likelihood ratio test
which improves the finite sample properties. The idea is that of the Bartlett
correction, see Bartlett (1937). Bartlett suggested finding an expression for the
expectation of the likelihood ratio test statistic. By means of this the statistic
is corrected to have the same mean as the limit distribution, thereby improving
the approximation.

A more precise formulation is as follows. We let # denote the parameter
and want to test the hypothesis of cointegration by the likelihood ratio test,
LR. We find an expression of the form

Eg(—2log LR) = E(T)(1 +T7'b(0) + - --),

where F(T') is the expectation of the LR for no cointegration in a model with
one lag. In the models considered in this paper the expectation, E(T'), depends
on the sample size, the number of common trends, and the type of deterministic
terms in the model, but not on the parameters. Let E(oo) = limp_.o, E(T) be
the mean of the limit distribution. The correction takes the form

E(oco) —2logLR —2log LR

~ - ~ )

E(T) 14+T-(0)  a(T)(1+T-'b(0))

which, at least to the order 7!, has the same mean as the limit distribu-
tion, and hence presumably has better finite sample properties. Here a(7T) =
E(T)/E(c0). In this paper we derive an analytic expression for b(6) and derive
by simulation an expression for a(T).

The distribution of the likelihood ratio test statistic depends on sample
size, T, and parameter, 6. For T' — oo the limit is not approached uniformly
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in the parameter, since the convergence is slow if 6 is close to a boundary
point where the cointegrating properties change. This non-uniformity in the
parameter causes the approximation to be poor in certain areas of the parameter
space, see Nielsen (1997b) for a discussion. In some examples where we can
calculate the correction term we can quantify this phenomenon.

In many situations in classical statistics with i.i.d. observations the Bartlett
correction gives a remarkable improvement of the fit, see Bartlett (1937) and
Lawley (1956), but in the unit root case we should not expect as much, see
Jensen and Wood (1995) and Bravo (1998), even though Nielsen (1997a) shows
that one in practice can get a better fit.

The rest of this section defines the models and the next section gives the
main result for the approximation of the expectation of the likelihood ratio
test and the proposed correction factor. Section 3 contains some simple models
where the correction can be worked out explicitly and the results are illustrated
by simulation. In Section 4 we discuss the calculation of the coefficients needed
for the correction factor. In Section 5 the main steps of the proof are given, but
most details are referred to an Appendix.

1.1 The models

We work throughout with the autoregressive model M for the n—dimensional
process X;, t =1,...,T defined by

k—1
My AX, =TIX,  + YDy + Y TiAX, i+ ®dy + &, (1)

i=1

where the errors g, are i.i.d. N,(0,£2) and the initial conditions are fixed. We
consider the deterministic terms D, = ¢"¢ and ®d;, = Y ¢, L®,ti. The param-
eters II, I'y,... ,['k—1, are (n x n), ® is (n X ng), and T (n x 1). The null
hypothesis we want to test is

II:II=a8,T=ap.

Under the null hypothesis the model is

k—1
M2 . AXt = CU(/@IXt,]_ + pltnd) -+ Z FiAthi + (Ddt + Et, (2)

i=1

where all parameters are unrestricted, but now a and 3 are (nxr) and p is (1xr).
The models we get for ngy = 0, 1, and perhaps even ny = 2, are used in practice
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and the notation is chosen to cover such cases. These models correspond to the
trend t"¢ being restricted to the cointegration space. We formulate the main
result in Theorem 1 about E[—2log LR(Ms|M;)] to cover the case of D; =0,
(or T = 0) such that we only test II = a/3’. We will implement the correction
only in the case D, = t™.

Of particular interest is the hypothesis II = 0 and T = 0, in the model
with only one lag

AXt = HXt_l + Y™ + (I)dt + Et,

which gives the Dickey Fuller test in n dimensions. The expected likelihood
ratio test statistic is

E(T,n,ng) = —2TE[log I, — M__}yMcz M Mz 4], (3)

where we have used the product moment notation

/

! T t—1
X + ..\ &5 + (I)dz
dt> = Z&} ( 0 ZZ;}LS ) ‘ dt> )

t=1

and where (U;|V;) denotes the residuals of a regression of U; on V;. The dis-
tribution in (3) does not involve any parameters but only sample size T and
dimensions n and n,. The exact analytic expression for E(T,n,ng) is difficult,
see Larsson (1998a,1998b), Nielsen (1997a), and Abadir, Hadri and Tzavalis
(1999), and we propose to tabulate it as a function of T, n, and ng, and apply
it as normalization in the correction factor.

2 The main result

In order to formulate the results we need a notation for some functions of the
parameters and some product moment matrices derived from a random walk.
2.1 Parameter functions

Under the assumption that the process X; is I(1) we let Y; be the process

(Xéﬁu AXta A)(t—la cet AXt—k—}-Q)



corrected for its mean. Then Y; is a stationary AR(1) process of dimension
ny =r+ (k — 1)n, given by

Yi=PY 1 + Qe

with
L +fa BTy -+ BTea BTra g
o' ' - Tpe T'po I,
P = 0 Ly - 0 0 Q=1 01, (4)
0 0 ces 1, 0 0

and variance ¥ = Var(Y;).

We define the permanent shocks
B, = (o, Qo) 2d e (5)
of dimension n, = n — r, and the transitory shocks
U, = (/Q ') 20/Q7 e, (6)

of dimension n,, = r, such that (Bj, U/)" are i.i.d. N,(0,I,), and find the repre-
sentation

Y, = Z P'Qe i = Z(GiUH + 4 Byi) = Yo + Y,
i=0 =0

with

N[

0; = P'Qa(a/Q 'a) 2, ¢, = P'QQa, (o, Qa ) 2.
We find the variances and covariances
Yo = Var(Yy) = > oo 0i0;, Sy = Var(Yy) = > oo i,
¥ = Var(Y;) = Y775, (0:8; + ) = Bg + Xy,

Yo(h) = Cov(Ygs, Youun) = BoP™, 7, (h) = Cov(Yyy, Yyiqn) = Xy P,
v(h) = Cov(Yi, Yin) = NP =, (h) +,(h).

(7)

We define the long-run coefficients

0 =500 = (In, = P) Qa0 ") 2,
¢ - Ezo ¢1 - (Iny - P)_IQQQL<CVILQGZL)7%7



and find the long-run variances 06" and ¢’ of Yp, and Yy, respectively. Let

Vo =00Y"1 = (I,, — P) 'Qa(a’QY ta) 1a/Q'(I,,, — P') 'E 1, (8)
Vy =9y'S = (I, — P)7'QQa, (o, Qo )1 QQ' (I, — P') '8~

Finally we need the matrix

V=y/S gptr{S y(h+ DY+ 'S (b 1S, (9)
h=0 h=0

2.2 Product moments of random walks
We define the extended process A; of dimension n, =n —r +1

1
A = ( 2eim1 B dt) ;

na
and for the case D; = 0 we define A;_; = (Zf;i B; + ﬂt"d| dt) , of dimension
ng = n —r, where i1 = n;'(a/, Qo )" 20/, &, 1 is the coefficient of the trend

tne in (o, Qary ) "2/, X;. We define the product moments

Moo =3  Aa Ay, Moy =S AB_y, M, =>"1_ ABj,

My, = 31_, BiBy, Myyq = My, — MyaM,} Ma, (10)
and
My, = MyM,} My,
My = (MyM,My)* = M,
My = MbaMc;LlM;), (11)
M, = MI;M@IMQ;)MMMJQIM% = M} Ms,
Ms = Mb_beaMa_alM;,;,

Mg = MM MY
We then formulate the main result about an approximation of the expectation
of the log likelihood ratio test.

Theorem 1 The expectation of the test for Il = af', T = ap’ when D, = t",
(or 11 = af’ if D; = 0) in model (1) has the expansion

E[—2logLR(M3|M})] £ —2TElog | I, — My; My M- M|

+T -t { My }r{' S} + tr{Ms}tr{l,, — 00'S™" —yp'S71})

+2T Y (tr{ E[M3]V'} — ngtr{ E[M3]y/'S 19 })

ST Y {E[My — 2Ms + (n — r)Mgl'S 1)

Here the moments M; and M;; are given in (10) and (11) and the coeffi-
cients 0,1, 5.V are found in (7), (8), and (9).
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The proof will be given in the Appendix. We have used the notation < to
indicate that we have kept terms of order 71.

We next apply this to the situation D, = t"¢, where the first term does not
depend on any parameters and we define the coefficients E(T', ny, nq), a(T, ny, ng),
and y(ny, ng) by

E(T,np,nq) = —2T E[log |1, — Mpa M Moy M, 4]
a<Ta nband) = E<Ta nband)/E<ooanband) (12)
Y(np, ng) = np limg_, o, E[tr{ My, M} M}/ E[tr{ My, M, M. }]

A consequence of Theorem 1 is the following corollary which implements
the approximation to a correction factor for the likelihood ratio test

Corollary 2 The correction factor for the test of My in My, that is, the test
for cointegrating rank r in the vector autoregressive model (1) with D, = t"
andd;, =1,... ,t" 1 nyg=0,1,2is

a(T,m—r,ng)(1+ %[61 +{(n—1)cg +2(c3 — ndﬁ)}fy?i—

The coefficient a(T,n — r,ng) is well approximated by
a(T,n—r,ng) =1+045T" n —7r)+1.2T%(n —r)?
and approzimations of y(n —r,ng) are given in Table 1 for ng = 0,1,2. Finally

oy = tr{Vy} = tr{(Ln, — P) 'QQu (¢/, Qo) 1/, QQ'(I,,, — P") 181},
ca = tr{l,, — (I, — P)leQQ/(Iny — P i1y
¢ = tr{V} = tr{{(I, — P)Vys @ Pl[Ls — P P|"} + tr{V,P(L,, + P)™'}.

The functions of the parameters are described in Section 2.1.

Proof. We find from (32) and (33) of Lemma 4 in the Appendix, that

limy o0 E(T, np, ng) = my(np, ng),

E[tr{ Msy/S 1 }] = ma(ny, na)ny ey,
limy o Eltr{M3V'}] = ms(ny, nd)nglcg,
limy oo E[My — 2Ms5 + (n —r)Mg] = 0,

W(Hb, Tld) = Npng (nb; nd)/m1<nba nd)a

limy o



1 n/T (n/T)?
ng di Dy a(T,n,ng) 1.000 0.450 1.200

0 0 ~(n) —0.499 0.069 —0.120
0 0 1 ~n0) ~0.486 0.180 —0.016
1 1 ¢t ) ~1.469 1.457 —0.611
2 1Lt 2 ~4(n,?2) ~2.338 3.306 —1.702

Table 1: Simple approximations of a(T',ny, ng) and y(n,ng) for the model with
D, = t"¢. The approximations are found by fitting a curve to simulated val-
ues based upon 100.000 simulations and values of n = 1,...,10, ngy = 0,1, 2,
and T = 50,100, 150, 200, 300, 400, 500, 1000. We approximate a(71’,ny,ng) by
E(T,ny,nq)/E(1000, np, ng), and define y(n) by (12) for the model with no
determinstic terms.

and hence with ny, =n —r

E[—2logLR(M2|M,)]

L E(T,np,nq) + T (my(ny, ng)cr + ma(ng, ng)ea + 2ma(ny, nd)ngl(Cg, — NgCy)
= E(T, np, na) (1 + T~ (c1 + v(ny, na)ng 2 (npea + 2(cs — nacy))

= E(o00, np, ng)a(T,ny,ng) (1 + T ey + v(ns, nd)nb_2(nb02 + 2(c3 — ngey)),

which is the result given in Corollary 2. m

The matrix appearing in the coefficient ¢y is the ratio of the long-run
variance to the short-run variance of the process Y;. We do not have an inter-
pretation of the coefficient c3. Note that the parameters ¢, ¢y, and c¢3 do not
depend on ng, but on the parameters and hence the dimensions n and r.

3 Some special cases

We next illustrate the results in some special cases, where the coefficients can
be worked out explicitly and which are convenient for simulation experiments
and for gaining some intuition for the result.

3.1 The test for no cointegration in the model with two
lags

We consider the test of [ =0 and T = 0 in the model with £ =2,n, =1
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AXt = HXt,:[ + FlAXt,1 + Tt + P + &¢ (13)

where ¢; are i.i.d. N,(0,Q), Il and I'; are n x n, T and ® are n x 1. Under
the null hypothesis there is no cointegration, but parameters I'y and ®, which
generates a linear trend in the process. We can find a simple expression for the
correction factor, if we assume that I'y = £1,,, and hence see the effect of the
short term dynamics. In this case we have a = 3 =0, a, = 3, = [,,, and that
Y, = X, — E(AX,) is autoregressive with coefficient P = &1, and Q@ = I,,, and
hence has the representation

Y, = Z gi&m-
i=0

This gives
Y = Var(AX,) = 25229 =——=Q Vy=——

such that

L oy = —op-& 03:n(n—1—1)L.

a=nre ¢ 3
From Corollary 2 we get the correction factor with n, =n,ng =1,k =2,7=0

1, (148 21
e ) (14

If instead d; = 0 and D, = 1, that is, ng = 0, we find the correction factor

a(T,n,1)(1 +

1+€ . 269(n,0)
T[l—f nﬂ—iﬂ) (15)
Some simulations were performed and are given in Table 2 to illustrate the
usefulness of formula (14). The DGP has n =5, 1 =0,T = 0,I'; = £1,,Q2 =
I,. Note that as £ tends to 1 the size of the test increases to 1 and hence

a(T,n,0)(1+

the asymptotic tables for the trace test are not useful. The correction factor
manages to correct the size to a reasonable level for ¢ < 0.6, say. The limit for
¢ tending to 1 corresponds to the process being 1(2). For £ = 0.6, a nominal 5%
test, using the asymptotic critical values is in reality a 84% test. The correction
brings the size down to 2%. As the size becomes even more distorted the
correction factor overcorrects due to the singularity in the expression 1/(1—¢).

Thus the parametric expression for the correction allows us to discuss when
the approximation using the asymptotics is useful and when the correction is
needed, and finally when both are useless.
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T\ 0 0.3 0.5 0.6 0.7
50 377—(1 17) %(1.27) }5—70(1 .39) %(1.51) ﬁ(m@)
100 1E2(1.08) 221(1.13) 8I(1.19) 49(1.24) BI(1.33)

Table 2: In model (13) with 7" = 50, n = 5, we simulate the test that II = 0, =
0. The number of simulations is 10.000. The correction is calculated from (14).
The table shows the simulated size of a nominal 5% test using asymptotic critical
values over the corrected size, with the factor in parenthesis.

3.2 The test for rank one in the model with one lag
The model with k =1,r =1,ny =1, is
AXt = HXt_l + Tt +d + Et, (]_6)

and we test II = a3, T = ap, where a and 3 are (n x 1). We find under the
null hypothesis

oo

Yi=08X, —E(BX)=> (1+pFa)fe
i=0
such that P = 1+ f'a,Q = #',n, = 1, and ¥ =Var(8X,) = 'Q3/(1 — (1 +
B'a)?). We define the parameter

- (6')?
k= ['Qay (o Qay) e QB/F06=1— a5
and find the coeflicients

@tpa) o 2046 o (dFa)
(&%

C1 = — T Ao v 2= T g 83

From Corollary 2 we find the correction factor for testing » = 1 in the model
with only one lag:

a(T,n—1,1)

<1+ [M +{2(1+ﬁa)( 1) — 2k }V(TTLL 111 D).

If instead we take d;, =0, D, = 1, and ng = 0, we get

a(T,n —1,0)
x(1 4 #[- &y 4 25T ((n — 1) — 26} L)),

We see that the formula breaks down if o/3 = 0, and that corresponds again to
X, being 1(2), see Johansen (1996, Theorem 4.2).
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T =100

as\a; -0.2 -0.4 —0.6 —0.8

0.2 FE(1.10) Z(1.04) 353 (1.03) 258 (1.03)
04 FE(1.13) 242(1.06) 252 (1.04) 222(1.03)
0.6 S (1.14) 21(1.06) 232 (1.04) 299(1.03)
0.8 g (1.14) 24(1.07) 352 (1.05) g2 (1.03)

Table 3: Test for IT = af’, T = ap in model (16) with "= 100,n = 5,7 = 1.
The entries show the simulated size of a nominal 5% test over the corrected size
and the factor in parenthesis. Number of simulations is 10.000 and the DGP
has a = (a1, a2,0,0,0), and 5 = (1,0,0,0,0), and 2 = I;.

T =50

as\a; -0.2 -0.4 —0.6 -0.8

0.2 Fe(1.21) ZP(1.09) 35 (1.07) g4 (1.06)
04 FE(127) 22 (1.12) 333 (1.08) g5k (1.07)
0.6 22 (129) 13(1.14) 22(1.09) 2(1.07)
0.8 §22(1.29) 245 (1.15) 822 (1.10) g (1.08)

Table 4: Test for IT = a3, T = ap in model (16) with T = 50,n = 5,r = 1.
The entries show the simulated size of a nominal 5% test over the corrected size
and the factor in parenthesis. Number of simulations is 10.000 and the DGP
has a = (a1, a2,0,0,0), and 5 = (1,0,0,0,0), and 2 = I;.
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It is easy to see that in model (16) it is enough to consider simulation
experiments with Q = I,,,8 = (1,0,...,0) and a = (ay,as,0,...,0). Thus
Tables 3 and 4 suitably extended cover all possible simulation results for n =
5,r = 1. It is seen that for a; + as < —0.4, the formula works reasonably well
for T' = 100, but for T' = 50, we need a; + as < —1.0.

3.3 The Dickey Fuller test for rank zero in the model
with k lags

We consider the test of II =0 and Y = 0 in the model

k—1
AXp =TIX, 1+ > TiAX; + Tt + ®d, + €. (17)

i=1

We can evaluate the expectation of the test statistic in the simple case when
I''=...=T1T%41 =11 =0and T = 0, in which case AX; = ®d; + &, in
order to see the effect of lag length. The stationary process Y; is of dimension
ny, = (k — 1)n, and when all I'; = 0, it is given by

Y;tl = AX{» s 7AX£—k+2 o E[Ang cet 7AXt/—k+2] - (827 s 752—k—|—2)'
We find
Y=Var(Y) =Qx L ,P=1,Q Ex 1,Q = I, ®ey,

where e; is the i-th unit vector in R* ! and Ej_; is the (k — 1) x (k — 1) shift
matrix defined by

0
0 Zk_le- e k>3
By = = =1 15
P Do 0 k=12
0O0 --- 10
Note that Ef_} = (E_;)*~* =0, and that

PiQ:(In®E]i71)(]n®el):(In®€¢+1),i:0,... ,k—l
(I, - P)'Q=1I,®(1,...,1) =1, %,
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say. We find for a; = I, that
Vy = (I, — P)7'QQa, (¢, Qa )1/ QQ'(I,,, — P')'E87!
= [, ® Q[I, ® /][Q ! @ [_1] = [I, ® u!],

and hence we get ¢; = n(k — 1), and since n, = tr{V,}, and Vj = 0, we find
co = 0. Finally to find c3 we evaluate

tr{[(lny o P)V@b ® P][Inz -P® P]il}

= Yico tr{[(In, — P)Vy @ PJ[P' © P']} | |

=37 tri(l,, — P)VyP'® Pl = Yoo tr{(In, — PYVyP'htr{ P} =0,

since tr{ P} = 0, and hence

s = tr{VyPI, + P) 1} = X5 tr{ {1, @ /][, © E][L, ® (1) B}
= 2o (~)itr{[L, ® W BH} = S (~1)nd B
= R0 (k-2 — ) = [ 51],

that is, n times the integer part of (k — 1)/2. Thus

kE—1
cg=(k—1n, =0, cg=n]| 5 ].
From Corollary 2 we get the result
1 k—1 2v(n,n
o(Tm.ng) (14 [0~ D ([ g - 1220y

This coincides with (14) and (15) for k =2 and £ = 0,n4 =0, 1. For k = 1
we just get the correction factor one a(T,n,ny), corresponding to the normal-
ization on the Dickey Fuller test in the model with one lag. Further simulations,
see for instance Table 5, show that as long as the number of parameters per
observation, kn/T, is less than 0.2, the formula gives a good approximation.
Thus for instance for n = 5,k = 2,T = 50 a nominal 5% test using asymptotic
critical values is in fact a 38.8% test. The correction gives a test with size 7.9%,
which is close enough to the 5% we want, and much better than the direct use
of the asymptotic tables.

Note that the first term of the correction (1 + 7(k — 1)n) corresponds
to multiplying the likelihood ratio test by T 1(T — (k — 1)n), which is the
correction found by Hansen and Rahbek (2000) based on a profile likelihood,
whereas Reimers (1992) suggested to use T-*(T — kn).
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E\T 20 100 200

1 £9(1.05)  2I(1.02) I2(1.00)
2 2L(117) 8(1.08)  35(1.02)
3 D2(128) 22(1.13) £2(1.03)

4 22(1.40) 28(1.19) 128(1.04)

Table 5: Test for [I = 0, = 0 in model (17), when n = 5 and I'; = 0. Entries
are simulated size over corrected size of a nominal 5% test and the factor in
parenthesis. The correction is calculated using (18). The number of simulations
is 10.000.

3.4 A real life examples

We illustrate the methods by a data sets taken from Johansen (1996). We
consider the Danish data set consisting of the four variables m; (log real M2),
y; (log real income), 72 (bond rate), and finally ¢ (deposit rate) observed quar-
terly from 1974:1 to 1987:3. We fitted a model with a restricted constant term
and seasonal dummies.

We decided in the book to take » = 1, to illustrate the methods, even
though the trace statistic (49.14) was below the 95% critical value 53.42 in the
asymptotic distribution. We here investigate by simulation the size of the tests
which use the asymptotic distribution, and the effect of applying the correction
factor.

In each simulation we use the estimated values of the parameters from
the Danish data to define the data generating process. We simulate 10.000
time series with 53 observations, which was the number of observations in the
example. The processes are started at the actual initial values and to simplify,
the seasonal dummies have been left out. In each simulation we estimate the
parameters and the correction factor.

We first let » = 0, and hence leave out the parameters & and B from
the data generating process. We next assume that r = 1 and simulate the
data using the estimated adjustment and cointegration vector & and A from the
Danish data.

We compare in Table 6 the simulated 95% quantiles with the asymptotic
ones. The simulated are larger than the asymptotic ones and this is what

13



r nr 95%(asym) 95%(sim)
0 4 5342 61.85 22(1.11)
1 3 3480 40.79 1L3(1.27)

Table 6: The correction of the rank test for the Danish data. The columns
give the rank and common trends tested, the asymptotic 95% quantiles and the
simulated ones. Next the simulated size over the corrected size of a nominal 5%
test and the factor in parenthesis.

is captured by the correction factor. There seems to be very little statistical
evidence of cointegration in the Danish data.

We also see that the direct use of the asymptotic tables gives for the test
of r =0, a 19% test instead of the nominal 5% size. The corrected test has a
size of 6% test. For r = 1 we get a 17% test instead of 5%, but the correction
factor brings the size down to 4%.

When we simulate the DGP with r» = 1, and use the test statistic for
r = 0, we find that a 5% test has power 69% and a 10% test has power 81%.

4 Calculation of coefficients in Theorem 1

We have given in Section 3 some examples where the correction has a simple
expression. We next discuss the general expressions and their calculation.
4.1 Calculation of variance
The variance ¥ can be found from the linear equations
Y = PYXP + QQQ,
with solution
vee(¥) = (I — P ® P) vec(QQQ).

The matrix to be inverted above can be quite large (nf/ X ni), and it is sometimes
an advantage to diagonalize P(n, X n,) and use a different expression for the
variance. Let P = K RK ' where R = diag(py, ... ,p,,) so that

K 'K '=RK'SK' 'R+ K 'QQQ' K"

14



and hence

Y= K{(KT'QQQ'K'™")i/(1 - pip;) } K.
For many simple examples the matrix P cannot be diagonalized but need a Jor-
dan decomposition. For the case where the parameters are estimated, however,
this happens with probability zero. In general P will have complex eigenvalues
and eigenvectors.

4.2 The coefficient ¢, cy, and c3

The coefficients ¢; and ¢y are calculated directly from their expressions in Corol-
lary 2. The coefficient c¢5 = tr{V'}, see (9), is given by

= tr{¢'S7 Y dptr{ST (DY ST Y (1S (19)
h=0 h=0

We first evaluate

tr{y/ S 30 Y r{E v (h + 1)}

= > oo tr{QQay (o, Qa )t Q' (I, — P') 8 P e { P}

= Yneotr{ld — P) Vi PP hr{ P"*1}

= Yoneo trilln, — P)Vy @ P|[P" & P}

= tr{[(,, P)Vw ® Pz — P @ P~ S
Equivalently we can find an expression in terms of the eigenvectors and eigen-
values of P = KRK !

>oneo tr{(I = P)VyP"}tr{P"+'}
S (K — R VKR K (R = 5 (K V) 402

W 1—p;p,

Next we get

tr{yp’ St 3T oy (h+ 1), }
= > o tr{QQay (o, Qo) T QQ' (I, — P)) X 1P+
= tr{(In,, — P)VyP(L, = P?)~'} = tr{V}P(I,,, + P) "'},

with an equivalent expression

VP, + P) ) = S e

This shows that cg = tr{V'} is as given the Corollary 2 and we find the additional
expression

1 k3
C3 = zl,_](K 1‘/;)[() pj Pi) + z ( l‘/;,/) )’LZ 1+p

”1pp
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5 Discussion of the principal steps in the proof

This section contains the basic ideas in the evaluation of the expectation of
the likelihood ratio test statistic and hence the ideas of the proof of Theorem
1. We first show that by introducing a model with a simple hypothesis on
the cointegrating space, we can exploit previous results (Johansen 2000) and
simplify the derivations. Then we introduce a convenient reparametrization of
model M and use it to derive an expansion of the test statistic in Theorem 3.
The detailed evaluation of the terms in the expansion are left to the Appendix.
We focus on the case D, = t"¢, and mention when necessary the modifications
for D, = 0.

We define model M3 by specifying the cointegration space sp(3°) or equiv-
alently by the restrictions

B=p3"7,p=p"1, 7(r xr).

In this case the model equations are

k-1

Ms: AX, = ar(B% X1+ p”Dy) + ) TiAX,_; + Pd; + & (20)

=1

Note that the parameter 7 can be absorbed in «, and that
./\/l3 Cc M, C ./\/ll,

in the sense of inclusion of parameter space.

The test for cointegrating rank is the test of My in M, but it is convenient
to use the usual trick, see Lawley (1956), and compare the two models by
introducing Mj. Let 6 denote the parameter and ©, ©,, and O3 the parameter
sets. We then get

maxgeo, L(0)  maxpco, L(0) maxgco, L(0)

maxgee, L(0)  maxgeco, L(0)" maxgee, L(0)

or
LR(Ms|M1) = LR(M3|M;)/LR(M;5| M)
and hence

Ey[—2log LR(M2|M1)] = Eg[—2log LR(M3|M.1)] + Ey[2log LR(M3|My)].
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The purpose of this expression is that we can use results for —2log LR(M3| M)
from Johansen (2000), which deals with the correction factor for a simple hy-
pothesis on ( in the cointegration model. In the present paper we find a cor-
rection to the joint test of rank and 3, —2log LR(M3| M), by deriving an
expansion of the expectation and finally we find the required approximation to
the expectation of the test for cointegrating rank by subtraction. The reason for
introducing the model M3 is that under the null hypothesis estimation of (20)
is a simple regression, which facilitates the calculations, and introducing M3
avoids an expansion of the eigenvalues entering into the trace statistic, since we
can use previous results on test for 3.

5.1 A reparametrization of M;

It is of course easy to derive the test statistic of M3 in M, applying the usual
regression formulae based upon equations (1) and (20). We find with an obvious
notation

MEE: T,AT
—2log LR(M3| M) = =T log |j\/[| - ’AO’D’d| : (21)
ee.8%z+p%D,Ax,d

We want to calculate the expectation of (21) for a given value of the parameters
a®, 3°, etc. which we call the true value. In order to get more manageable
expressions we introduce a new parametrization and regressors using the true
value of the parameters, as in Johansen (2000).

We use the notation
k—1
W= (Y,... . I9,), I*=1,- > TV,
i=1
and note that under the null, where rank(a’) = rank(3°) = r, the process is
I(1) if |a9T°39 | # 0, see Johansen (1996, Theorem 4.2). We let
0" = R a0 ol

and give Granger’s representation

t o)
Xt = CO Z(c?l + (I)Odl) —+ Z O? (515—1' —+ (I)Odt_i + G{OPOIDt_Z’) + K,

i=1 i=0
where K depends on initial conditions and %K = 0. We find from
IT = II(I — C°I°) + [IC°T° = (I, — C°T%)3"6% + 1159 (a9T°4%) LafT®,
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since (I, — C°T')8% = 0, that we can choose new parameters as functions of
the old

W = I(I, — C°T)3°, (nxr)

5 = Hﬁi, (nx (n—1))
& = o — (nx 1)

The old parameters in terms of the new are given by
1= 8, (a%T°50) ~a%T® + /5%, o = 8, +¢/p".

The null hypothesis M3 is expressed as ¢ = 0, which is clearly equivalent to
1=/ and o ='p.

Model equation (1) with the new parameters is

AX, =/ 8Y X1 + 6 (a 'T°89)1a%T°X,_, + 85D,

22
Z FAXt z+cbdt+€t7 ( )

where ﬁnget—l =BYX,_1 + p"D,.

Under the null hypothesis M3, where the rank is r, and 8° and p° are
known, it holds that ﬁO'Xt_l + p¥D, and AX, have a mean that is linear in d;.
Since ® enters unrestricted, we can replace the regressors 3% X,_; + p”D; and
the lagged differences with the stationary regressors

V;tfl = ﬁOIthl - EO(ﬁOIthl);
Zia = (AX] | — Eo(AX] ), .. \AX] 1 — Eo(AX] ).

We also want to replace the regressors (a9T°39) 1a9T°X, | and D, by
something simpler without changing the statistical model and hence the test
that 6 = 0. We find by summing equation (2) that

t
oY (X, — Xo) = ZFO (Xpi— X )+ (g + 0%).
i=1
By subtracting Zi.:ll 'YX, on both sides and replacing ¢ by ¢ — 1 we get
k—1 t—1

oYX, 1 =aYXo+aY > TUX i1 — Xy — X ) +aY > (e + %)),
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Because we are correcting for lagged differences in the regression (22) we can
replace (a9T°3%) 1a9T°X, ; and D, by the non stationary regressor

dt) )

of dimension n, = n —r + 1, and where K, depends on initial conditions. A

( Ko+ (aYQ09) 72 3701 (6 + ©°d;)
Dy

non-singular linear transformation of this yields the regressor

_ [ (@Y%) TPl YT e _ (X8
Ay = dy | = D
t

Dy
Obviously if D, = 0, we do not extend the process. We define u =
ng'(a92%9) 20y @0 | and A,y = (3,_) Bi + pt"a|d,) of dimension n, =

n — r. Model equation (22) in the new variables and with suitably redefined

dt> . (23)

parameters ¥ and & becomes
AXt = ¢/‘/;71 + (SlAt,]_ + \IJ thl + @ dt + €t (24)
(n) (r) (Ta) ((k—1)n) (na)  (n)

where the dimensions are indicated below each variable. The test for M3 in
M is the test for 6 = 0 in (24). The estimators for the parameters v, 6, W,
®, and  are found by regression of AX; on (V,_1, A—1, Z;_1,d;), and under
the hypothesis 6 = 0 the parameters can be found by regression of AX,; on
(Vic1, Zi—1, dy).

Similarly the model M5 can be reparametrized as

AXt = Oé‘/t_l + O[(SIAt_l + v Zt—l + P dt + Et, (25)
(n) (r) (na)  (k=Dn) () ()

see equation (14) in Johansen (2000), and the test for M3 in M is the test for
§=0in (25).

This formulation covers both the case D; = t™¢ and D; = 0.

5.2 The likelihood ratio test and its expansion

We define the product moment matrices M,, for the variables AX,, ¢;, and d,
at time ¢t but V, 1, A, 1, and Z; | lagged one period. Thus for instance

/

T AXt AXt MOO MOU M06
Z ‘/;5,1 V;tfl - MvO Mvv Mvs
t=1 Et Et MEO Mav MEE
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We use the notation for any three process X;, U;, and V; 1, say,

(Ui Xy) = Uy — Mo M, X,
Muv.m - ZZ:1<Ut|Xt)(V;S|Xt)/ — Muv - MumMm_mleva

and in particular we use a notation for the moment matrices corrected for the
lagged differences Z;_; and d;, since many results look a bit simpler this way,
and some results can be taken from Johansen (2000)

Suv - wv.z,d — Muv - Mude_dlMdU - A]\4uz.d]\4_1 sz.d-

zz.d

These moment matrices appear naturally when the likelihood function is con-
centrated with respect to ¥ and &.

The likelihood ratio test of M3 in M is the test that 6 = 0, which is
expressed in terms of product moments as

_ SOO.av| |S56.av| |S55.v - Ssa.vsil Sas.v|
LR 2/T(M3|M1) _ | ol ol aa.v ,
|SOO.’U‘ |Sse.v‘ ‘Sss.v|

which is just another expression for (21), but given in terms of processes that
are normalized. Hence with Q = T'S% S...,5. 1. S..., we find

~2log LR(M3|M,) = —Tlog |I,, — T71Q| ,

which implies
1
~2log LR(Ms|My) = tr{Q} + 5= tr{Q%}. (26)

We use this expression derived from (24) combined with a similar expres-
sion from Johansen (2000) for —2logLR(M3|Ms) derived from (25) to find
an expansion for —2logLR(M3y|M;) which will form the basis for the further
calculations. We define

k= (/Q la) 1, Yps = Var(f' X, |AXy, ..., AX] ).

Theorem 3 The likelihood ratio test for cointegrating rank in model (1) has
the expansion

—2logLR(My| M)
— Ttr{sab.vslgllvsba.vs&tlﬂ} + %Ttr{(sab.vslgllvsba.vsil )2}

aa.v

ZtT{Sba_US;alSau_v,bl{/S;}SUb} — Tﬁlt’l“{lﬁzgﬁl I{SuaS;CLlsabSbaS&}Sau}.

— tr{SbaS(;}SabSva@lfm’Sﬁva} + tr{SuaSa_alSau/@’S;}vaSva;]%}
+ 2tr{Sp S, Sauk’ Syt Spuk’ Sy Sup b
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The proof will be given in the Appendix. By a detailed analysis of these
terms one can then find an expression for the expectation of —2log LR(Ms| M)
and hence prove Theorem 1 and hence Corollary 2.

6 Conclusion

A detailed analysis of the Taylor’s expansion of the trace statistic gives an
approximation of its expectation, which is used for a correction factor of the
form

a(T,np,ng)(1 + T b(ny, ng, 0)).

A numerical approximation to a(T',ny,ng) is found by simulation and a com-
putable formula for b(ng, ng, 0) is given.

A general conclusion from the simulation experiments is that as 6 ap-
proaches a boundary point, where the cointegration and integration properties
change, the size of a nominal 5% test tends to one, and the corrected size tends
to zero, since the correction factor has a singularity at that point.

Throughout, however, the corrected size is closer to the nominal value,
so there seems to be an large area of the parameter space where the correction
appears to be a useful supplement to the tool box for the analysis of cointegrated
systems.

7 Acknowledgment

Discussions with Bent Nielsen and Henrik Hansen have been extremely use-
ful for the results of this paper, and Henrik Hansen has helped me checking
the calculations involved in the approximation of the moments a(7', n,.,n4) and

Y1, ng).

8 References

Abadir, K. M., Hadri K., and Tzavalis, E. (1999), The influence of VAR
dimension on estimator biases, Fconometrica 67, 163-181.

21



Ahn, S. K. and Reinsel, C. G. (1990), Estimation for partially non-stationary
multivariate autoregressive models, Journal of the American Statistical Associ-
ation 85, 813-823.

Anderson, T. W. (1951), Estimating linear restrictions on regression coef-
ficients for multivariate normal distributions, Annals of Mathematical Statistics
22, 327-351.

Bartlett, M. S. (1937), Properties of sufficiency and statistical tests, Pro-
ceeding of the Royal Society of London Series A, Vol. 160, 268-282.

Basu, D. (1955), On statistics independent of a complete sufficient statis-
tic, Sankhya 15, 377-380.
Bravo, F. (1998), A correction factor for unit root test statistics, Discus-

sion paper No. 9809, University of Southampton.

Cheung, Y-W, and Lai, K. S. (1993), Finite sample sizes of Johansens like-
lihood ratio tests for cointegration, Ozford Bulletin of Economics and Statistics
55, 313- 32.

Gonzalo, J. and Pitarakis, J.-Y. (1999), Dimensionality effect in coin-
tegration analysis, in Cointegration, Causality and Forecasting: Festschrift in
Honour of Clive Granger, R. F. Engle and H. White (eds.), Oxford University
Press, Oxford.

Hansen, H. and Rahbek, A. C. (2000), Approximate conditional unit root
inference, Discussion paper, University of Copenhagen.

Haug, A. A. (1996), Tests for cointegration: A Monte Carlo comparison,
Journal of Econometrics 71, 89-115

Jensen, J. L and Wood, A. T. A. (1997), On the non-existence of a Bartlett
correction for unit root tests, Statistics and Probability Letters 35, 181-187.

Johansen, S. (1988), Statistical Analysis of Cointegration Vectors, Journal
of Economic Dynamics and Control 12, 231-254.

Johansen, S. (1996), Likelihood-based inference in cointegrated vector au-
toregressive models, Oxford University Press, Oxford.

Johansen, S. (2000), The Bartlett correction of the test for rank in the
cointegrated vector autoregressive model, (forthcoming Econometric Theory)

Larsson, R. (1998a), Bartlett corrections for unit root test statistics, Jour-
nal of Times Series Analysis 19, 426-438.

Larsson, R. (1998b), Distribution approximation of unit root test in au-
toregressive models, Econometrics Journal 1, 10-26.

22



Lawley, D. N. (1956), A general method for approximating to the distri-
bution of likelihood ratio criteria, Biometrika 43, 296-303.

Nielsen, B. (1997a), Bartlett correction of the unit root test in autoregres-
sive models, Biometrika 84, 500-504.

Nielsen, B. (1997b), On the distribution of tests for cointegration rank,
Discussion Paper No. 113, Nuffield College, Oxford.

Reimers, H.-E. (1992), Comparison of tests for multivariate cointegration,
Statistical Papers 33, 335-359.

Toda, H. Y. (1995), Finite sample performance of likelihood ratio tests
for cointegrating rank in vector autoregressions, Fconometric Theory 11, 1015-
1032.

9 Appendix

9.1 Proof of Theorem 3

Proof. We start by expanding the matrix @, see (26), by introducing the
variables U; and By, see (5) and (6), and find

tT{Q} = Ttr{sae.vsil Saa.v‘sgl

o) G ) (5
— Tir ua.v UV ub.v ua.v g-1
{( Sba.v > Sbu.v Sbb.v Sba.v aa.v}
= TtT{Sab.vS&).leba.vS;al_v} + Ttr{Sau.v,bsgqiv,bsua.v,bs&ll_v
tr{@Q1 + Q2},

such that from (26) we find
1
—2log LR(M3|M1) = tr{Q; + Q2} + §T‘1tr{(Q1 +@2)*}. (27)

The term ()5 can be rewritten as follows

Q? = TSau.v,bSJJ_%[)Sua.v,bSa_al,v
- TSau.v,bsil Sua.v,bsil b+TSau.v,bsil

uw.v,b aa.v, uw.v,b

= Qa1 + Qa2,

where Soq.0p = Saan — Sab,US,;).leba,U, such that

Sua.v,b<sil - Sil

aa.v aa.v,b)?

(28)

Stn = Soaw+ Soe

aa.v,b aa.v aa.v

Sab.vszg).lvsba.vs_l + OP<S;a1T_2)'

aa.v
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Hence the term, @99, in (28) becomes

— -1 -1 -1

sz - TSau.v,bSuu.U,bSua.v,b(Saa_v o Saa.v,b)
1 -1 -1 -1 -1
= _TSGU-U,bSuu.v,bSuaﬂ7bSaa.vSab-USbb.USba-USaa.v
— -1
= —T 7 Q2Qu,

and for Q3 we find
Q5 = (SauSuaSad )
Thus

—2log LR(M3|M,) = tr{Q1} +tr{Qa} + %T_ltT{Q%} + %T‘ltr{Qg}
é TtT{Sab_vSI;)}vaa_vS;al.v} + Ttr{S;al_v,bsau.v,bs&}_v,bSua.v,b}

+%Ttr{(Sab.USI;).leba.vSa_al.v)2} + %T_ltT{ (Sausuasa_al)z}'
(29)

In Johansen (Theorem 3, 2000) it was shown that

—2log LR(M3|My)

Ttr{S s 3 SauwbSw pSuawst + 3T (SuaSid Sau)?}
20115, S a0.0S SupShaw

T’ltr{/{ZgﬁlﬁSuaS;alSabSbaS;alSau}.
tr{SbaSa_alSabSvaq;jl’izs&;Iva} - tr{SuaSa_aISauHS&)lvaSbUS&)l’%}
— 2t1{SpaS; 1S uu kS, Spuk S, Sup b

I~

+ + +

Subtracting this result from (29), we have finished the proof of the expansion
in Theorem 3. m

9.2 Asymptotic moments

The next Lemma contains the results about product moments that can be used
to evaluate the various terms in the expansion of the likelihood ratio test. We
define the standard Brownian motion W (s) by the limit

of dimension ny = n — r. Suitably normalized the process Ajpy, see (23), con-
verges to a limit F'(s), which depends on W (s) and the deterministic terms.
The limit of the moments can be expressed in terms of W and F.
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Lemma 4 Let D, = t", &d;, = Z?jgl D;t' ng = 0,1,2. Let A,_1 be given by
(23), then

T—I/QIn w
< 0 b Tond > A[Ts] — F(S) = < M;Ef) ‘ 1,... ,Sndl) . (30)

It follows that

My 2 W) ([ FEds) PV = Mo ma),
My [ (W) ( fy FFds) o (Jo F@Wy +7) = My(n,na),

Mg % (T’ + fol(dW)F’> ( I8 FF’ds) - ( [Py + T) = Mg(np, na),
T = (I,,,0).

(31)
The matrices
MQ(nbv nd) - M12(nb7 nd)
M4(nb7 nd) — M?/, (nba nd)M3(nb7 nd)
can be expressed similarly. For i = 1,...,6, the matrices limpE[M;] are pro-
portional to the identity matrix such that for any matriz K we have
E[tr{M;K}] — m;(ny, ng)n; 'tr{K}, (32)
where we define the coefficients m;(ny, ng) = limp Eltr{M,}].
Finally the relation
E[M4 - 2M5 - ’I’LbMG] — O, (33)

has been verified by simulation for ng = 0,1, 2.

If dy = D, = 0, these results hold with ' =W, and T = I,,,.

Proof. The results (30) and (31) follow from standard results about
Brownian motion. Note that M;5 is different from the other moments. It has a
constant mean but a variance that grows like 7', which makes (33) difficult and
time consuming to check.

To prove (32) we let H(W) be any of the limit functionals given in (31).
It is not difficult to see that for any orthonormal matrix O :

O'H(W)O = H(O'W),
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which has the same distribution as H(W), and hence the same expectation.
Thus E[H (W)] is invariant under orthogonal transformations and hence propor-
tional to the identity matrix I,,,. The elements in the diagonal can be expressed
as tr{ E[H(W)]}n, . =

We next define the processes

7= Sy, 2 wes)

T3 Y (BB; — Inb) = W(s),
TS BB B Wk(s),i=1,...,
T2 S B UL B W), i =1, ...

K3

It is seen that W = W, W¥ W Wb Wb . are all mutually independent
and hence that W Wb Wb . are independent of the limits involving WW°
and W*".

(34)

In the calculations in the Appendix we often replace Si_ A, 1A, | , by
M, since it holds that

T -1y
(Z AHA{H) STALA ST, forall k,
t=1

t=1

and similarly we replace ZtT:l A, 4B, |, by M} = Zle ABy, if k> 0 and
by M., for k < 0.

Lemma 5

T E(My,My,) — tr{X}1,, (35)
T_IE(Mbeby) — an (36)
E[OM}E + MM, HMEO + M) = 0 n.00 + YE[M} M, ML (37)

EIM (ME0 + Mg ) OMf, + M| = tr{0'0} L, + B[M, MEy'v M)
(38)

E[T (Myy = Tl )Mys] = Y Ak + 10 + Gptr{y(k+ 1)} (39)

Tfl/Q((Myy —TI,, ), M) asymp. indep. of My, M, 1May (40)

M2 M,, asymp. distr. as M, M2(MF 0 + M) (41)
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Proof. Proof of (35):

T_IE(MbyMyb)
=T Zs,t,i,j E[Bt(Ut/—i—ﬁ; + Bé—i—1¢§)(9jUs—j—1 + ¢st—j—1)B§]
=T 13, BBU_ 100U i 1 Bl +T 32, EIBB_; i), Bii 1 BY]

= (S tr{0i0:} + tr{wi}) Lo, = tr{S} .

Proof of (36):

T E(Myy My, )
=T 30, BlOUs 1 + ;B j 1) BiBU(Up_; 10 + By_i_1%)]
=T Zt,i E[eiUtfileéBtUtl—i—ﬁ;] +T Zt,i E[wiBt*ileéBtBé—i—lwg]

=y >oico(0:0; + Vi) = mpX.

The results (37) and (38) follow by similar calculations.
Proof of (39): We find
T_IE[(Myy o TIny)Myb]
= T_IE[Zs,l,j,k,m{Qj(Us—j—lUsl—k—1 — 8l )0) 4 ;B j Ul 10,
+ 0;Us—j 1Bl ¥+ (Beej1 By — Ojuly )y}
X (HmUl—m—l + mel—m—l)Bl/]}-

We get three contributions A;, As, and As. First
Ay =T7E[ Y ¢;Bej 1Ul_ 4 100U m 1B,

S7l7j7k7m

This gives a contribution if s — 75 —1 =17and s —k —1 =1—m — 1, which
implies k£ = j +m + 1, and then we find

A 2 Ztr{9;’+m+19m}¢j = Z%‘W{%(j + 1)}
J,m j=0

Next

Ay = TﬁlE[Zs,l,k,j,m91'US*jflBéfkflwgcemUl*mlelI]
- TﬁlE[Zs,l,k,j,mHjUS—j—lUl/—m—lginkaS—k—lBlI]'

Here we get a contribution if s —j—1=[1—m — 1, and |l = s — k — 1, which
implies that j = k + 1 4+ m, and hence

Ay = Zej+m+10;n¢j = Z%(j + 1)/¢j-
jym 7=0
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Finally we get the term

0 e
=TE[ Y ¥;(Beja Bl s — 65l )Y Biom -1 B,
s,l,g,k,m
Here we get a contribution for s —j —1=1—m —1 and s — k — 1 = [, which
implies j =k+1+4+mand fors—j—1=I]land s—k—1=1[0—m— 1, which
implies k = 7 +m + 1. Hence

Az = TE, jm rimsr Biom 1By, Bim 1 B]]
+T71E[Zs,l,j,mw BiB] 1V ¥m Bi-m-1B]]
>k Vpoprmp1 U Uy + > im Vit {Y a1 ¥m }

= Zzio %/;(k + 1)/¢k + Z;io ¢jtr{%/;(j + 1)/}-

Adding the contributions from Aj;, As, and As, we find the result (39).

Proof of (40): The limit of 7-?(M,, — T'1,) and T~'/?>M,, involve the
Brownian motions W% and W, whereas the limit of My, M o M, involves we
and W*, see (34).

Proof of (41): The limit of Mg’ M,y is given by

9

Mc;zl/2M — Mc;tl/z Z =0 Zt At 1<Ut/ i— 10/ + B —i— 1¢ )
2o FF'du) Y2 [ FAW™)0 + [ [ FA(W?Y + Y]],

which is the same limit as Myq"> MF0" + M*Ey').
ab

Lemma 6
Myq asymp. indep. of (Mpa My M, Myo M. Myy)
Proof. Consider the statistical model for the parameters vy, ... ,v,,1 :
TLdfl
dZ, = Z v;is'ds +dW,,0 < s <1, (42)
i=0

where W is standard Brownian motion. We define the statistics S; = fol s'dW (s),
1=0,...,ng— 1, and

H = [} (dZ)F" ( [y FF'ds) " Y Fazy
H* = [[(dZ)F' ( Iy FF’ds) B (Jo F(dZ) + 7).
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with

F = ( Zs 1, . ,Snd_l) .
s"d
The statistic S = (S, ... ,Sn,—1) is multivariate Gaussian and minimal suf-
ficient and complete for the parameters vp, ... ,v,,_1. We next want to prove

that H is ancillary, and it follows that it is independent of S by Basu’s theorem,
see Basu (1955).

By integrating (42) it is seen that the

nd—l

ZS:ZO—FZ?:}'_—ilSi_‘_l—FWS,OSSSL
=0

ng—1
1,...,s5" )

ng—1
1,...,8™ )

The statistic H is invariant under the linear transformation, such that all pa-

hence

s§™d

o ( 7o + U, 1y ts™ 4+ W

_ 1 vnd,lngl + Zol{nd:()} WS
0 1 s"d

rameters can be eliminated from the expressions involving F, and F' can be

1,... ,s”d1> :
TLd*].

o) o0 1 1
/ (dZ)F' = Zv/ siF’ds+/ (dWS)F’:/ (dW,)F",
0 i—0 0 0 0

since F' is orthogonal to 1, ... , s"~!. Thus the statistic H is ancillary and hence
independent of Sy, , ... ,S,,—1. The same proof can be used for H+.

replaced by

F:(Ws

s

Finally it is seen that from (42) that

The limit of M;; is a function of Sp,,...,S,,—1, Whereas the limit of
(Myo MM My M1 M) can be expressed in terms of H and H+. =

aa ab’

9.3 Proof of Theorem 1

Proof. We apply the expansion from Theorem 3, and we find that the last five
terms are calculated in Johansen (2000, proof of Theorem 4). It is shown there
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that the total contribution of these terms is
—(n—r7)(n—r7r+1)vy, (43)

where vy = tr{6'> 710}, see (8). What remains are the two terms

TE[tT{Sab-USl;).leba-USc;a%v}] + %TE[tT{(Sab-USI;).leba-USc:al.v)2}]' (44)

The second term in (44) is easy because of the factor 77!, and we find the
evaluations

Saa.v - Maa.y,d - Maa - May.dM?szdMya.d - Maa + OP(TilMaa)a

hd 1

Sab.v - Mab.y,d - Mab - May.dMy;dMyb.d - Mab + OP<MabT 2)7

Stoy = Mb.ya = Mpp.a — Mby.dM;;dMyb.d = Mpp.qa + Op(1),
such that

TE[tr{(My. MM Moy)?}].  (45)

aa.v

%TE[tr{(sab.vsb;?vsba.vs—l )2} L

DN | —

What remains is the first term of (44). We expand it as follows:
TSab.vS[;)_lUSba.vS_l = Mab.y,deib_ly,dea.y,dMil

aa.v aa.y,d
=T (Mg — MayM;;dMyb.d)(Mbb.d - Mby.dMydeyb.d)*l
X (Mya — My a My Myo) (Mo — Moy My M),

where we have used that M,; = 0, since A;_; has been orthogonalized on d;.

We get a number of different terms when expanding and keeping terms of order
Tt

E[Ttr{Sa.0Sp.,Sa.0S i }]

= T MMy, Myo M2

— T (May My Myp.a) My Mya Mgt — T May My o(Myy.aMyy,qMya) Mg

yy.d yy.d*'"Y

+T My My, 'y (Myy g M, Myp.q) Myt Moo M (46)

+T Moy My 5y My My (M M, ' Myo ) M,

yy.d-""ya
AT (May M, Myp.a) My oy (Myy g M, Mya) Mgt

yy.d yy.d*’rya

=Ko+ T YK+ Ky + K3+ Ky).
The first term is
E[Ko| = TE[tr{MaMgy" My, M},
which we combine with (45) to the term

T E[tr{May My, 1 Mya Mgt Y] + 5T E[tr{ (My, o Moa M, Map)? }]
1

= ZTE[log |]nb - sz.beaM(;leab‘]a
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which is the main term in Theorem 1.

For the remaining terms in (46) we can prove with

v = tr{Ve}, vy = tr{Vi}, 7o = tr{,(0)S "}, 7y = {7, (0)Z 1)

E[K,]

E[K,]
E[K3]

E[K,]

—2T?E[tr{(Mu,M, ' Myy.q) Myt My M1 }]

yy.d
tT{E[Ml]}(—’Ug —Tg+ Uy — ’7'1/,) —+ tT{E[Mg]}(—’U@ + 7o — Uy + 7’1/))
2tr{ E[M5|'% ) + ng E[M3]y'Y 1) — E[M3]V},

T2 E[tr{ Ma, My, -y ( Moy g M,  Myp.a) My, oy My M

(r + (k = Dn)tr{ E[My]},

T2 Eltr{ MapMy, g Mya Mg (May M, 4 Mya) Mg }]

tr{ E[Mi]}vg + tr{ E[My)y'S "1},
T2 Eltr{MayM,, s Myba My, Moy aM,, s Mya My}
(n—r+1)(n—r)vg+ (n— r)tr{ E[Ms]t'S "},

where ¢'¥ 11 is given by (8) and V by (19). Adding these contributions we
note that the first term in E[K,] cancels (43) and find the result in Theorem 1.

The final part of this proof contains a detailed evaluation of the terms

E[Ki],. ..

K1

, E[K4], in order to prove these relations.

Note that we have

such that

We find

00" =30 o ve(h) = 32020 ve(h) + 3202, ve(h)'s
PP =3 Yy (h) = Do vy (h) + D hty vy ()

2er{X 71 Y2 ve(R)} (tr{Vo} = tr{7(0)}) = (vo —79),
2r{X7 300200 = (0 {Ve} +tr{y(0)}) = (ve + 7o), (47)
20057 3 (B} = (Er{Vy} —tr{7,(0)}) = (vy —7y),
20057 300 v ()} = (tr{Vy} +tr{7,(0)}) = (vy +7y)
K
—2T2tr{MayM£dMyb_de_b_ldea}

_Ztr{MayUny - (Iny - T_lMyy-d))_1<Myb - Mynd;ilMdb)

X (Iny = (Iny, = T™ Myp.a)) ™ Mya}

—QtT{MayMbeba} + 2T_1t’l“{May(Myy.d — T]ny)Mbeba}
—ZtT{MayMyde_dlMdbea} + 2T’1tr{MayMyb(Mbb_d — T]nb)Mba}
K1 + Ko + K13 + K4

31



In the following we always find the expectation by first conditioning on
the permanent shocks B,. This makes the evaluation of the expectations easier
and separates the factors due to the common trends and those due to the
transitory shocks. We also normalize on M, = I,,,, and X = I, , for notational
convenience.

K
E[K14]
—ZE[tT{MayMbeba}]
_ZE[tT{Zt,s,i,j Atfl(Utl—i—ﬁg + Bé—i—1¢;)(6jUsfjfl + ijsfjfl)B;Mba}]
—2B[tr{3>, ,;; Ar1Ui_i10:0;Us— 1B, Mo }]
_2E[tT{Zt,s,¢,j AtflBé—i—lwgijsfjlegMba}] = K + Kio.

In the first term we get a contribution for ¢t —¢ —1=s— 7 — 1, and find

ElKm] = —=2Er{3,;; AaBi iy jMua}]tr{0;0;}
V)

_ZE[tT{Mabea}] zigj tr{egej} - 2E[tT{M£MbaH Z

9
9

tr{0;0,},

i>j

where we have replaced ), A, 1B, ;,; with My, if i < j and M} isi> j. We
then get, see (47)

o

E[Kim] = —2tr{E[M]} 327 tr{ve (h)} — 2tr{E[Ms]} 325~ tr{ve (h)}
—tT{E[Ml]}(Ug + ’7'9) — tT{E[M3]}(1}9 — ’7'9).

In the term Ko we write

t—1
A=A+ Z AA;,
j=t—i
and find
ElKus] = —2E[tr{}_,,; ; Aic1Bi_i 100 Bsj1 B Mpa}]

—2B[tr{37, i (X me1 AArm) Bl B j1 B{Mpa }]
= K1 + K22

In Ki121 we replace Y, Ay ;1B,_,_; by M} and find

Kun = —2E[tr{y/ Z%(Z By_j 1 BMpa M) }.
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Simulations show that

T—00

lim E[Y B, 1BiMy,M}]

is independent of j = 0,1,..., and we find,
K1121 g —2t7“{E[M5]’¢/¢}

For the next term we find a contribution for t—m = s,t—i—1=s—j—1,
such that ¢ = m + j, that is 7 <. We then get

E[K1122] _2E[tr{2tszj(z AAt m)Bé — 1¢¢ BS —Jj— 1B Mba}]

_QE[W{ZDJ' Zs AAsBsfjfﬁbﬂﬂstfjlesMba}]
—2B[tr{>>, AA B My }] 3=, tri{viv;}
—2B[tr{(Mg, — Map) Moo YJtr {3770 75 (b + 1)}
—(vy — 7y) (tr{ E[M3]} — tr{ E[Mi]}).

9

llo I

Adding the contributions we find, see (47),

E[Ki] 2 —2tr{E[Ms]/1v} — my(ve + To — vy + T

48
—mg3(vg — To + Vy — Ty). (48)
Ko
We can replace My, 4 by M, and find from (39)
E[K2) = 2E[tr{M,,(M,, — TI,,) MMy M,}]
0
—= 2T 1t7“{E[( yy TIny)Myb]E[MbaMay]} (49)
= 2tr{3 25 (V(k + 1)ty + Yytr{y(k + 1)'}) E[My, M 53"}
S our{ MV}
Kis

Next we consider
E[K3]
= —2E[tr{Mu,MygM ;' Mg,My,}]
= 2B[tr{> 2 1 m A 1(U] i 10+ Bl 1) 0nUi 1+, B 1)
X dy My}t My,]
= _2E[tr{2t,l,i,m AtflUé—i—legemUlfmfld;M&llMba]
—2B[tr{}", s Ac1Bl i 1 0ithy, Bl 1di My My] = K131 + Kis)
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For Ki3; we find a contribution for ¢t — ¢ —1=1—m —1:

= _ZE[tT{Zt,i,m AtflUt/—i—legemUt—i—ld;t—i—kmMc;llMdbea}
2 2Bt {0 Av1d) i Mg My My 1 {010,,,}
= 2Bt {0 A d, L M My Mg Ytr {00, } = 0,

since Myq = 0. We have used the relation d} ;,,, = d;L'"™", for a matrix which
is lower triangular with 1 in the diagonal. This holds since d; = (1,... ,t"™1).
For K35 we get

E[Kl32] = —ZE[tT{M;{)@bI Zz,m ¢mBldE+m+1Md_dlMdbea}]
—2E[tr{ M} > b, Mg (L) My Mgy My, }]
=2t {¢)" 3, Yy E[Myq (L") My M) E[Mpa M)},

= I

because Mg is asymptotically independent of My, M. see Lemma 6. We there-

ab’

fore evaluate
E[Mpg(L')™ ™ My, M) = 3, E[Bdi(L')™ " M, d, B]]
= Zt di(L/)m_HMdjildt]nb = tr{(Ll)m—H}]nb = ndlnb’
since tr{L™} = ny. We then find

E[Ki3] £ —2ngE[tr{Mz'v}]. (50)

E[K14] = ZT_ltT{MayMyb(Mbb.d — T]nb)Mba}-

This term has the same stochastic components as K71, and is of lower order of
magnitude, such that

9

E[K14) = 0. (51)

Collecting terms we find from (48), (49), and (50), (51) the expression for F[Kj]
K2
We have

E[Ks] = E[tr{Mu(My, oM, Myp.q) My},

yy.d

and since My, 4 M} Myy,q = My, M, 'My, = T~ My, My, we get

E[Ks] 2 tr{ E[My, M) E[My, M)} = nyma,
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see Lemma 5.
K3

Again we can drop the conditioning on d; and replace M,, by T'1,, and
find

B3] 2 tr{ E[Mq,Myo Moy Mya]},
which by (38) can be written as

E[K5) = tr{ E[Mu,My (M},0' + M) (0M, + ¥ M)}
= tr{@’e}tr{E[Mabea]} + tr{E[w'qﬂM,;;MabeaM;Z]}
= tr{E[M]}tr{0'0} + Eltr{ Myy'y}] = tr{ E[Mi]}ve + E[tr{Myp"y}].

K4
We drop the conditioning on d; and replace M,, by T, and find from
Lemma 5
BlKy) = T 'tr{E[Mu,M;My,M,]}
Y

T r{ E[(OM}, + My, ) (M0 + M) E[ My, My, ]}
np(ngtr{00'} + E[tr{Mes'}]) = ny(nqve + E[tr{ Mg }]).

This concludes the proof of Theorem 1. m
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