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Abstract

Electricity production from renewable sources generally displaces thermal gen-
eration, which leads to lower CO2 emissions in the power sector. However, the
intermittent nature of many renewable technologies in combination with less
residual demand leads to greater inefficiencies in the operation of existing fossil
power plants. This inefficiency translates into a higher rate of emissions rela-
tive to output. In this paper we focus on Italian power installations between
2005 and 2014. Using panel econometrics, we show that a 10% increase in
photovoltaics and wind infeed has reduced yearly CO2 emissions of the average
thermal installation by about 2% while the average plants emissions relative to
its output have increased by about 0.3%.
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1. Introduction

In the past decade, there has been considerable growth in the production of
electricity from renewable energy sources, in particular from solar photovoltaic
(PV) and wind. For the most part, this growth has been supported by dedicated
environmental and energy policies, which have impacted many power markets
around the world.

Electricity production from renewable sources affects power systems in var-
ious ways. The determining factor of all those changes is that renewables have
an almost zero marginal cost of production and therefore displace conventional
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generators with a positive marginal cost. This displacement of thermal pro-
duction generally translates into lower average spot market prices (see, e.g.,
Green & Vasilakos, 2010; Woo et al., 2011; Würzburg et al., 2013; Paraschiv et al.,
2014; Clò et al., 2015) and also impacts spot price variance (see, e.g., Wozabal et al.,
2016).2 From an environmental perspective, electricity generation from renew-
able sources generally leads to fewer emissions in the power sector as they tend
to replace fossil fuel generation (see, e.g., Berghmans et al., 2014, for the case
of European thermal plants). This first-order effect of renewables on emissions
is one of the main justifications to support the deployment of renewables in the
power sector, which is the largest emitter in terms of global CO2 emissions.3

In this paper, we study the effect of intermittent renewables, i.e., power gen-
eration from PV and wind, on the emission factors of conventional generators.
Emission factors are defined as emissions relative to output. The power genera-
tion profile of intermittent renewables fluctuates and is partially unpredictable
which may lead to an increase of the emission factor due to two main reasons.
First, it results in increased load-cycling activity of thermal units since electric-
ity demand has to match supply instantaneously. This is especially relevant if
storage technologies, interconnection, or demand side flexibility are absent, and
the only option to match demand and supply is to intensively ramp thermal
units up and down.4 Second, the reduced demand for conventional generation
increases the probability that thermal units work at a capacity factor lower
than that designed for maximum efficiency. Those factors partially offset the
reduction of CO2 emissions due to the reduction in the use of fossil fuels and it
increases the abatement cost in the power sector. The goal of this paper is to
study empirically the impact of PV and wind on the emission factors of thermal
generation, in particular of coal and gas power plants.

There exists a considerable amount of literature on the impact of renewables
on the power system and, in particular, on CO2 emissions reduction. One strand
of literature takes an engineering approach and estimates the impact of wind
and solar by using power sector modeling (examples are Weigt et al. (2013)
for Germany, Denny & O’Malley (2006) for Ireland, Delarue et al. (2009) for
Belgium, Holttinen & Tuhkanen (2004) for the Nordic countries). In general,
these works predict the impact of future large shares of solar and wind energy
production and thus take an ex-ante approach. A second strand of literature
uses econometric techniques to analyze empirical data on production and emis-
sions. These works take an ex-post approach as they estimate how solar and

2The effect on final consumer prices, which very often includes the cost of renewable sub-
sidies, is unclear. Cludius et al. (2014) point to the re-distributional effects between different
consumer groups in Germany: industrial consumers benefit from lower average spot mar-
ket prices while households and small and medium size enterprises carry most of the cost of
subsidizing renewables.

3According to IEA Statistics (2014) electricity and heat generation accounted for 42% of
global CO2 emissions in 2012.

4Graff Zivin et al. (2014); Carson & Novan (2013) explore the impact of demand-side in-
terventions on marginal emissions. From a market perspective, such interventions flatten the
daily load profile by replacing a portion of peak period electricity generation with increased
off-peak production. Since in many cases the latter is dirtier than the former, total market
CO2 emissions may increase. However, the load-cycling activity of a single thermal plant may
be reduced given that the load is less volatile and therefore its emissions relative to output
decrease.
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wind energy have already impacted the power system. In the case of Texas,
Novan (2015) and Kaffine et al. (2013) studied the effect of renewables in mar-
ket environments and evaluated the effect of wind generation on emissions by
using aggregated system-wide emissions data. Cullen (2013) answered the same
question but using disaggregated data on CO2 emissions based on average plant
emission rates. They all find that, on average, a MWh5 of electricity generated
by wind offsets between 0.5 and 0.7 tons of CO2 emissions in Texas. For Europe,
Berghmans et al. (2014), using panel-data econometric analysis of power plants
in the EU, find that CO2 reduction in the electricity sector was mostly due to
the development of renewable energy production.

The literature points out that the exact effect of renewables on emissions
is highly heterogeneous in various dimensions: (i) spatial, i.e., across markets
depending on the generation mix and therefore on the marginal plants affected;
(ii) temporal, i.e., their effect differs across time or levels of electricity demand
(see, e.g., Novan, 2015; Graff Zivin et al., 2014; Cullen, 2013; Fell & Linn, 2013;
Kaffine et al., 2013; Siler-Evans et al., 2012); and (iii) within markets depending
on the installed capacity (see, e.g., Novan, 2015). In fact, the larger the amount
of installed capacity, the more it affects plants at the bottom of the merit order
stack, which tend to be the dirtiest and least flexible ones, i.e., coal plants.

Regarding the impact of renewables on emission factors, Katzenstein & Apt
(2009) were among the first to explicitly take into account the increase of load-
cycling as a consequence of increased penetration from PV and wind. They
measure this effect from an engineering standpoint for two gas generators only.
They use production and emission data to compare the actual emission offsets
from PV and wind with those implied when using average emission factors.
Consequently, they find that through renewable penetration, CO2 emissions
may be 20% higher than expected if the power fluctuations caused no additional
emissions. A limit of this study is that the findings lack a system perspective
where the externalities of renewable generation may be shared among many
power installations (Cullen, 2013). Troy et al. (2010) studied the impact of high
wind penetration on base-load cycling in Ireland using a scheduling model of the
power sector. They found that wind penetration affects the cycling operations
of the base-load units: when installed wind capacity goes from 0% to 42%, the
annual start-ups for a typical coal unit increase by 32%, and those of a combined
cycle gas turbine (CCGT) unit increase by 340%. Van den Bergh & Delarue
(2015) studied the impact of large penetration of wind and solar on the cycling
of conventional power plants using a dispatch model applied to the German
power system. When penetration from renewables is low, flexibility is provided
by starting up and shutting down of high dynamic CCGT power plants. With
the increase of generation from renewables, flexibility comes more from the
ramping of low dynamic steam power plants and less from the start-up/shut-
down of CCGT power plants. Characteristic of these works is the engineering
approach based on dispatch models.

In this paper, we study the effect of PV and wind on the emission factors
using empirical data for the Italian power system. We apply panel data econo-
metrics to the market data from 2005 to 2014. This is an interesting period to

5MWh is a unit of energy equivalent to 1 megawatt (MW) of power expended for one hour.
1,000 MW equals 1 gigawatt (GW) and 1,000 GW equals 1 terawatt (TW).
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analyze as Italy has experienced an impressive growth in wind and solar energy.
Combining hourly electricity production data for 93 thermal installations with
their annual CO2 emissions, we are able to analyze the effect of additional re-
newable infeed on annual emission factors. To the best of our knowledge, we are
the first to study the emission efficiency of thermal generation with measured
emissions on installation level in a market environment over a ten year period.

Our contribution to the literature is twofold. Firstly, with respect to the
specific literature on the impact of renewables on emission factors, we are able
to quantify the inefficiencies caused by renewables over ten years using empirical
data for a large set of fossil fuel-fired power installations. Secondly, with respect
to the more general econometric literature on the impact of renewables on CO2

emissions, we can use data on measured emissions over time for each power
installation, while previous papers only combined generation data with average
plant emission factors, or estimated the impact of renewables on total market
emissions. By using installation level panel data over the course of ten years, we
can evaluate the effect on different plant types and analyze the role of investment
in more modern plants. Moreover, Italy’s power sector is a system dominated
by fossil fuels that has faced a high penetration from PV and wind over the past
few years. Such transformations are currently observed in many other power
systems around the world, which make our results globally relevant.

Our results suggest that additional penetration from wind and PV increase
the emission factor. Hence, there is an increase in emissions relative to out-
put for the average installation. The results are significant and stable across
several model specifications. Furthermore, we find that additional intermittent
renewables lessen the expected reduction of emissions by about 11% for the
average installation. This number is lower than in Katzenstein & Apt (2009)
and highlights the importance of a system perspective where the burden of in-
termittency may be shared among many power installations. We find a less
pronounced effect for plants which have been retrofitted.

We organize the remainder of the paper as follows. In Section 2, we de-
scribe our empirical strategy to identify the effect of renewables on emission
factors. Thereafter, in Section 3, we detail the data gathering and matching
process. Furthermore, we briefly describe the Italian electricity market as well
as the European Emissions Trading System (EU ETS). In Section 4, we present
our results, quantify the increased inefficiency, and provide several robustness
checks. We conclude the paper in Section 5.

2. Empirical strategy

In this paper, we apply several specifications of panel data models to pin
down the effect of additional renewables in the system on emissions of thermal
plants. Due to the low marginal cost of production of many renewables, it is
obvious that more costly thermal generation will be offset if there is an increase
in the amount of renewables in the system. This is known as the first-order
effect of renewables on thermal production and henceforth on CO2 emission
reduction. However, the intermittent nature of many renewable power produc-
tion sources as, e.g., wind or PV, may require thermal plants to adjust their
production more frequently than in a system where only demand is variable.
Furthermore, increased renewable generation in general would likely push some
thermal generation off the margin and running at a lower capacity factor may
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impact the thermal plant’s emissions intensity. Thus, the second-order effect of
renewables on emissions is the increased inefficiency of thermal plants induced
by renewables. A major contribution of this paper is to quantify the magnitude
of the second-order effect. Therefore, we analyze the effect of additional in-
termittent renewable production on the emission factors of thermal plants, i.e.,
their emissions relative to output. Emission factors for each thermal installation
i and each year t are defined as

φi,t =
Ei,t

Qi,t

,

whereas Ei,t denotes the annual CO2 emissions and Qi,t the annual production.
We explain those emission factors by two types of variables: system-specific

variables and installation-specific variables. The amount of renewable genera-
tion in the market and the residual demand left to all thermal installations in
the system belong to the former category. These factors vary over time, but not
over installation, while the installation variables vary over both dimensions, as,
e.g., the commissioning year of the installation or its input cost structure.

We consider the annual residual demand RDt, defined as the demand left to
all thermal installations operating in the system, as a system-specific variable.
Formally, we define it as

RDt = (Dt −Ht − It)−Rt = D′

t −Rt,

whereas Dt denotes the annual electricity demand, Rt the amount of intermit-
tent renewables in a year, Ht the annual net generation from hydro power,6

and It the net imports, i.e., the imports minus exports. In this paper, we are
mostly interested in the effect of an increase in Rt, hence we use only Rt and
D′

t as explanatory variables. To enhance readability, we refer to D′

t as residual
demand in the remainder of the paper although it describes only the demand
minus hydro production and net imports.

Besides fixed effects for every installation, we also include other installation-
specific effectsXi,t = (Yi,t, Fi,t) as control variables in our regressions. These are
the commissioning year Yi,t and the input cost structure of an installation Fi,t.
The latter is the cost of the energy input which includes the cost of the fossil fuel
and the CO2 cost.7 The inclusion of input cost structure is motivated by the
fact that plants with higher input cost structure are less competitive and there-
fore less dispatched in a market framework. To account for inter-installation

6We added electricity consumption for pumped hydro storage to the electricity generation
from hydro plants. Hydro production from pumping amounted to only 1,711 GWh in 2014.
Assuming an efficiency factor of 0.75, electricity consumption for pumped hydro storage rep-
resents only 0.8% of the total demand or 6.1% of PV and wind generation. Hence, we do not
explicitly consider the effect of hydro storage.

7Prices paid for coal, gas, and oil by the power plants are often determined in long-term
contracts which are not publicly available. For our analysis, we used the estimations made by
REF-E which come from the analysis of the European historical spot prices and on information
on the Italian power sector that REF-E regularly collects. For the CO2 price, we used the
prompt-future of the European Union Allowances as this is one of the most liquid market of
the EU ETS allowances. Data were retrieved from Point Carbon and ICE. Fuel type specific
average carbon conversion factors are taken from Graf & Wozabal (2013). These are 0.32 for
coal, 0.18 for gas, and 0.25 for oil and represent tons of C02 per MWh.
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variance, we put the unit-capacity weighted averages of the variables Yi,t and
Fi,t. For example, if an installation consists of a 400 MW capacity gas genera-
tion unit and an 800 MW coal generation unit, its gas capacity share is equal
to 1/3 and its coal share is equal to 2/3. We decided to use capacity weights
instead of generation weights because the latter would suffer from endogeneity
bias. Installation-specific effects show variation within installation in 27 out of
89 cases.

Similar to Bushnell & Wolfram (2005), we use fixed effects models and a log-
log specification in our main specification. There are several reasons why we pre-
fer a log-log specification to a linear one. First, on the unit level the relation be-
tween output and thermal efficiency is concave (see, e.g., Van den Bergh & Delarue,
2015). Second, the log-log specification outperforms the linear specification in
terms of fit. Third, in a later step we relate the estimated inefficiency to the
emission reduction of the average plant. Since electricity generation is measured
in MWh and CO2 emissions in tons, a log-log specification allows us to compare
the two in terms of percentage increase. We do not consider any dynamic effects
since we operate with annual data. We estimate the following regression

ln(φi,t) = β1 ln(D
′

t) + β2 ln(Rt) + β3 lnXi,t + ǫi,t, (1)

whereas the error term ǫi,t in (1) can be broken down into

ǫi,t = µi + νi,t,

where µi denotes the unobservable installation-specific fixed effect and νi,t the
independent and identically distributed remainder error term, i.e., νi,t ∼ IID(0, σ2

νi,t
).

In our case the installation specific effects capture variables as technology, effi-
ciency, and the like. Explanatory variables are assumed to be independent of
νi,t, ∀i, t.

We are mostly concerned about the size and the statistical significance of
β2 the coefficient of ln(Rt) in (1). Its interpretation is that a 1% increase in
renewables increases the average installations’ emission factor by β2 percent. If
it were zero, the second order effect of renewables on thermal plants emissions
will be absent, or put differently, more intermittent renewables will not increase
the inefficiency of the average plant.

We argue that all our explanatory variables are exogenous. Annual electricity
consumption mostly depends on macroeconomic factors; net imports depend on
market conditions in neighboring countries relative to the own country; and the
production from hydroelectric plants depends on weather. The exact amount of
renewable penetration also depends on weather conditions while the amount of
installed renewable capacity mostly depends on subsidies which are politically
decided.

3. Data and descriptive statistics

Italy is the geographical focus of this study for two reasons. First, because
of the considerable increase of generation from wind and PV in the last few
years, and second, because of the excellent data availability for this market.
Both factors qualify Italy for an excellent study case.
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In order to identify the increased inefficiency of thermal installations caused
by additional renewables in the system, we combine data-sets from five differ-
ent sources: (i) accepted electricity market offers and bids at generation unit
level published by the Italian electricity market operator (GME),8 (ii) verified
total emissions at installation level provided by the European Transaction Log
(EUTL)9, (iii) data on renewable production and electricity consumption from
the Italian transmission system operator (TERNA),10 (iv) additional data on
Italian power generators obtained from an Italian consulting company (REF-
E),11 and (v) data on imports and exports provided by the European Network
of Transmission System Operators for Electricity (ENTSO-E).12 Our data spans
from 2005 to 2014.

3.1. Italian electricity market

The Italian electricity spot market is organized in a sequential manner, with
a day-ahead market, five intra-day markets, and ancillary service markets. The
day-ahead market is the most important one in terms of volume transactions.
It started operation in 2004, but active demand bids entered the market in
2005. In the day-ahead market, generators and suppliers submit their supply
and demand bids for each of the 24 hours of the next day. The day-ahead market
price is determined in a single price, closed bid auction for every hour of the
following day (see, e.g., Bigerna & Bollino, 2014, for a more detailed description
of the market). In the presence of congestion in the electricity grid, the market
is split into up to six different market zones (see Figure 1) with different prices.
However, according to Bigerna et al. (2015, 2016); Sapio (2015) this is mainly
an issue between Sicily and the mainland.

After the clearing of the day-ahead market, participants have the chance to
rebalance their bids on the intra-day markets. In the last instance – in and
near real time – the transmission system operator TERNA acts as a counter-
part to ensure that demand equals supply. Those interventions are necessary
to guarantee system security and they are organized in the ancillary service
markets.13

In order to derive the total production schedules of the generators, we add
the net positions of the intra-day markets and ancillary service markets to the
day-ahead market offers. The market bids also include bilateral trades hence
it is possible to derive a very detailed production profile. This is confirmed
when comparing the aggregated manually derived production to the total net
production reported by TERNA over the years 2005 to 2014, which is around
95%. Hence, we conclude that the derived production serves as a valid proxy
for actual production.

Figure 2 shows the Italian power production mix and its transition. Most
production stems from thermal generation, whereas most of which comes from

8We include accepted offers on the day-ahead spot market, as well as accepted net offers
on intra-day and ancillary service markets.

9See http://ec.europa.eu/environment/ets.
10See http://www.terna.it.
11See http://www.ref-e.com.
12See https://www.entsoe.eu.
13For further details on the sequence of clearing, we refer to

https://www.mercatoelettrico.org/En/Mercati/MercatoElettrico/MPE.aspx.
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Figure 1: Italian market zones in 2014.

gas turbines. While thermal production shares have been around 80% between
2005 and 2008, they have decreased drastically thereafter due to a demand
shock (economic crisis) and the large deployment of wind and PV. This huge
increase in production from renewables in few years is the result of the Italian
renewable energy policies which gave generous incentives for renewable produc-
tion and supported large investment in wind and solar capacity. These policies
have been implemented also to comply with the European Union (EU) bind-
ing targets for 2020. For Italy, that is 18% of final energy consumption from
renewables by 2020. Italy has implemented different types of support scheme:
for wind, the most important has been “Certificati Verdi,” a green certificate
system, while for solar “Conto Energia,” a feed-in premium tariff (see, e.g.,
Marcantonini & Valero, 2017). As a result of the massive expansion of renew-
ables, thermal plants accounted for only 61% of Italy’s total electricity produc-
tion in 2014.

3.2. EU ETS

The European Union Emissions Trading System (EU ETS) is the largest
cap-and-trade program in the world. The system was introduced in 2005 and
is the main pillar of the EU climate policy. The EU ETS includes 31 countries
(the 28 EU member states plus Norway, Iceland, and Liechtenstein) and more
than 15,000 installations from the major industrial sectors. Specifically for the
power sector, it includes all generating installations with a net heat excess of
20 MW. The definition of an installation in the EU ETS does not correspond
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Figure 2: Italian yearly gross electricity production mix. Source: TERNA.

to the definition of a generation unit in the power market and, in general,
one installation in the EU ETS may include different generation units. Each
installation must monitor their emissions and report them to the competent
national authority. Each national authority verifies the information and reports
it to the European Commission that stores it in a central registry called the
European Union Transaction Log (EUTL), which is publicly available.

3.3. Data matching

We are able to derive hourly production schedules for each generating unit
participating in the Italian electricity market. Data on CO2 emissions from the
EU ETS, however, is available only in annual resolutions and at installation
level. A power installation defined by the EU ETS usually comprises more
than one generation unit. Using the REF-E generator database, which includes
technical information on most Italian power plants, we are able to match the spot
market production data with the EU ETS emission data, and identify annual
generation for almost all Italian EU ETS power installations.14 We managed
to match 98 EU ETS installations, which represent 76% of the Italian gross

14The European Commission (EC) provides data on emissions at installation
level including the 4 digit NACE code for the years 2005 until 2012, see
https://ec.europa.eu/clima/policies/ets/allowances/leakage_en#tab-0-2. NACE Rev.
2 code 35.11 stands for “Production of electricity.” We used this list as a starting point to
match the data and manually applied the remainder.
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thermal generation (excluding auto-production and geothermal production)15

between the years 2005 and 2014.
According to the EIA, the average US CO2 emission factors for natural gas

plants were around 0.55 tons per MWh in 2013 and for bituminous coal around
0.94.16 To avoid biased results and to hedge against data mismatch, we exclude
installations with annual emission factors larger than two in one of the ten years
of observations. Disproportionately high emission factors are often in plants that
are in operation only for a few hours in a year. In the most extreme case, the
emissions produced by switching on a unit whose spot market offer is accepted
only for one single hour in a year exceeds the emissions produced by generating
electricity for this particular hour.

By restricting the emission factor, our remaining sample still covers 93 Ital-
ian EU ETS power generation installations, which represent 73% of Italy’s total
net thermal production between 2005 and 2014. In comparison to the total of
98 matched installations, we still cover 96% of the emissions. The 93 instal-
lations contain 222 generation units, so on average an installation consists of
about two generating units. Furthermore, we excluded installation/year obser-
vations for new installations from our samples. A new installation may have to
perform some test-runs which show up on the CO2 balance but not in market
production. A zonal comparison of the sample corrections reveals that the Cen-
ter North and Center South zones are more affected than all others. For the
econometric analysis, we exclude installations which include units running on a
special regime called CIP-6. A unit qualified as CIP-6 does not participate in
the power market but receives subsidies for its production. We eventually end
up with 89 installations.

3.4. Descriptive statistics

Figure 3, Panel a, shows aggregated yearly production and emissions of the
installations in our sample. The production pattern is similar to that of all
Italian thermal plants as depicted in Figure 2. Emissions are coupled with
production – the higher production the higher the emissions. However, the
emissions relative to output vary considerably over time, as can be seen in
Figure 3 (b). While the average emission factor decreased between 2005 to
2008, it has increased thereafter and quite impressively after 2011 – the time
when intermittent renewables started playing an even more important role in
the power mix. The average effect may be also driven by changing fuel prices
which have an influence on the dispatch. For example if coal gets cheaper,
electricity generation from coal will increase and hence the average emission
factor will increase as well, since coal is dirtier than gas. However, as shown in
Figure A.5, when we split the sample into installations either running on coal
or gas, we find an increase in the average emission factors for both technologies
after 2011.

In Table 1, we show the descriptive statistics of variables used in our re-
gressions. The age is calculated as 2014 – the maximum year of our sample –

15Data provided by TERNA.
16EIA reports pounds of CO2 per kWh for bituminous coal equal to 2.07 and for natural

gas equal to 1.21. Data are calculated using the average heat rates for US steam-electric
generators in 2013. See http://www.eia.gov/tools/faqs/faq.cfm?id=74&t=11.
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Figure 3: Panel (a): Aggregated production/emissions of the thermal plants in our sample.
Panel (b): Aggregated emissions relative to aggregated production.

Variable Abbr. Mean SD Min Max Unit

Production Q 1,919,617 2,351,159 71 16,700,000 MWh
Emissions E 1,146,594 1,854,985 65 15,300,000 tCO2

Emission factor φ 0.65 0.28 0.36 1.69 Ratio
Renewables R 15,959,000 14,481,743 2,347,000 37,484,000 MWh
Residual demand D′ 221,161,648 17,035,207 189,956,525 242,104,675 MWh
Age Y 20.27 14.10 2 60 Year
Input cost structure F 38.33 11.40 11.97 77.60 EUR/MWh

Table 1: Descriptive statistics.

minus the capacity weighted commissioning year of each installation. We also
use capacity weights to calculate the installation’s input cost structure.

4. Results

4.1. Baseline regression

In order to estimate the average effect of additional electricity generation
by intermittent renewables sources on thermal plants’ emission factors, we run
several specifications of the regression model stated in (1). We always use robust
standard errors clustered by installation in order to allow for heteroskedasticity
and correlation over time for a given installation.

4.1.1. All installations

We report the regression results including all installations in column 1 of
Table 2. An increase of 1% intermittent renewables in the system leads to a
0.03% higher emission factor on average. The residual demand left for thermal
installations as well as the installation’s input cost structure negatively affect
the emission factor although both coefficients are not statistically significant.
The absolute value of β1 – the coefficient of ln(D′) – is larger than that of
renewables, which can be explained by the different levels of the two variables.
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(all) (base) (peak) (old) (zonal)

Residual demand −0.065 −0.021 0.077 −0.131
(0.108) (0.151) (0.201) (0.136)

Renewables 0.028∗∗∗ 0.023∗∗ 0.049∗ 0.037∗∗

(0.007) (0.008) (0.021) (0.011)
Age 0.208∗∗ 0.150∗ 0.161 0.149 0.195∗∗

(0.065) (0.067) (0.115) (0.101) (0.064)
Input cost structure −0.030 −0.063 −0.032 0.018 −0.023

(0.031) (0.050) (0.064) (0.024) (0.032)
Residual demand (zone) −0.071

(0.083)
Renewables (zone) 0.012∗∗

(0.004)

Installation fixed-effects Yes Yes Yes Yes Yes
R2 within/between 0.17/0.54 0.15/0.56 0.13/0.18 0.21/0.47 0.15/0.52
Observations 721 508 213 337 721
Installations 89 65 27 37 89

Notes: All variables in natural log form. Robust standard errors clustered by installa-
tion reported in parentheses. Asterisks indicate statistical significance at 5% (∗), 1%
(∗∗), and 0.1% (∗∗∗) levels.

Table 2: The effect of renewables on emission factors.

A percentage increase of D′ has a higher impact on thermal installations than
an equivalent decrease in R, since current production of wind and PV is only
about one-tenth of the maximum residual demand.17

The age of the plant has a positive effect on the emission factor, i.e., a
one-year increase in the hypothetical capacity weighted age in 2014 leads to an
increase in the emission factor by about 0.2%.

The R2, and thereby the fraction of explained variation, is 17% between
installation and 54% within installations. The values are reasonable and and
therefore the possibility of wrongly estimated coefficients due to omitted vari-
ables is limited.

4.1.2. Examining installation heterogeneity

The fixed effects model captures firm heterogeneity by including an indicator
variable for every installation. Thus, the intercept is allowed to change for every
installation. The installation’s slopes, however, are homogenous which means
that the respective coefficients reflect only the average effect of, e.g., additional
renewable infeed. Such a model does not fully account for the peculiarities of
power systems. Cheap renewables first displace expensive peak-load generation
and their emissions. Given that installed renewable capacity is low to moderate,
base-load plants are affected only in situations of low demand and high renew-

17The correlation between ln(D′) and ln(R′) is equal to −0.7. Removing ln(D′) from
the regressions affects the magnitude of β2 only slightly and has no effect on its statistical
significance.
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able production. In terms of flexibility peak-load plants outperform base-load
plants. Hence, adjusting the load of a peak-load generation unit is much more
efficient in terms of cost and emissions. Consequently, there are two contrary
effects at work: peak-load installations are more frequently affected but the im-
pact on emission factors is smaller compared to base-load installations which
are affected less frequently but the impact is higher.

To account for the difference in slope heterogeneity, our first strategy is
to split the sample into base-load and peak-load installations. We classify as
base-load installations the installations consisting of coal generating units, co-
generation units, or combined cycle units. The remaining installations we define
as peak-load installations. As a second strategy, we run a random coefficient
model whose results are presented in Section 4.3.

Column 2 in Table 2 reports the results including only base-load installations.
It turns out that the coefficient of renewables is lower compared to the baseline
regression (column 1). When reducing the sample to peak-load installations
only, we observe a larger effect. Hence, we find evidence that, at current levels
of intermittent renewables in the system, the peak-load installations’ emission
factors are affected more (column 3) than those of base-load installations.

4.1.3. The role of investment

Another source of heterogeneity are installations that have built up new ca-
pacity in comparison to installations which have not done so. In order to identify
the role of investment in newer generating units, we look at installations which
have not increased their capacity weighted commissioning year during that time
or which have a capacity weighted commissioning year lower than 2005. New
capacity build-up is generally more efficient and, possibly, the response to a
changed market environment, while for older installations the opposite holds
true. The results – stated in column 4 of Table 2 – show that the effect of
additional renewables on emission factors is larger compared to the scenario
where we include all installations. Hence, relative emissions from installations
that have not invested in newer generation capacity show a larger response to
increased penetration from renewables.

Figure 4 shows the installed capacity of the installations in our sample. There
have been considerable investments in gas generation units from 2005 to 2012.
Oil units almost completely disappeared. The capacity of coal has remained
quite constant over the period analyzed, it had a non negligible increase only
from 2009 to 2010.

The massive investment in gas generation units possibly led to the drop in
the overall emission factor in 2008 and 2011, as can be seen in Figure 3(b).18

4.1.4. Market splitting

In case of physical congestion, Italy’s electricity market can be divided into
six different market zones. In order to account for possible market splitting, we
replace cross-country residual demand and generation from intermittent renew-
able sources by their zonal values. We denote the former by zD′ and the latter

18According to TERNA, the amount of combined cycle gas capacity has
roughly doubled between 2004 and 2014, see “Impianti di generazione” under
http://www.terna.it/it-it/sistemaelettrico/statisticheeprevisioni/datistatistici.aspx.
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Figure 4: Installed capacity.

by zR. The positive effect of additional renewable generation on the emission
factor is still statistically significant albeit its level is slightly lower compared
to the other regressions (see column 5 in Table 2). Another advantage of us-
ing data differentiated by zones, is that we now have variation of renewables
and residual demand over time and zone and not solely over time which high-
lights the causal effect of renewables on emission factors. However, according to
Bigerna et al. (2015, 2016); Sapio (2015) inter-market congestion is mainly an
issue between Sicily, and the mainland. Hence, in the remainder of the paper
we mainly concentrate on the other cases.

4.2. Magnitude of the effect

An important issue is the magnitude of the increased inefficiency caused by
renewables. More precisely, the share of the increased inefficiency in comparison
to the offset emissions. Therefore, we estimate also the first-order effect of
renewables on the emissions, i.e., ln(Ei,t). As explanatory variables, we add
capacity to the set of explanatory variables specified in (1).19 Table 3 shows the
estimates for the five versions as we had it before with the emission factors.

The coefficients of ln(R) are negative and statistically significant in all spec-
ifications. Their values range between −0.19 and −0.67, i.e., a one percent
increase in intermittent renewables leads to a reduction of emissions between

19To be precise we use the natural log of capacity. Omitting this variable leads only to a
slight change in the level of the coefficients of interest.
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(all) (base) (peak) (old) (zonal)

Residual demand 3.898∗∗∗ 2.953∗∗∗ 1.145 3.069∗∗

(0.738) (0.664) (1.809) (1.101)
Renewables −0.226∗∗ −0.186∗∗ −0.671∗∗ −0.319∗∗

(0.068) (0.063) (0.211) (0.103)
Age 0.075 −0.132 3.386 4.881∗ 0.344

(0.226) (0.334) (2.169) (2.006) (0.213)
Input cost structure −1.083∗∗∗ −0.495∗ −0.163 −0.789∗ −0.937∗∗∗

(0.254) (0.200) (0.677) (0.364) (0.247)
Capacity 1.418∗∗∗ 0.621 1.584∗∗∗ 1.821∗∗∗ 1.592∗∗∗

(0.322) (0.337) (0.331) (0.451) (0.396)
Residual demand (zone) 2.428∗∗∗

(0.624)
Renewables (zone) −0.112∗∗

(0.034)

Installation fixed-effects Yes Yes Yes Yes Yes
R2 within/between 0.49/0.57 0.40/0.65 0.62/0.28 0.43/0.19 0.42/0.38
Observations 721 508 213 337 721
Installations 89 65 27 37 89

Notes: All variables in natural log form. Robust standard errors clustered by installa-
tion reported in parentheses. Asterisks indicate statistical significance at 5% (∗), 1%
(∗∗), and 0.1% (∗∗∗) levels.

Table 3: The effect of renewables on verified emissions.

0.19 and 0.67 percent. The coefficient of residual demand is positive although
not statistically significant in the sample restricted to peak-load installations.
The R2 are reasonable in all specifications.

To quantify the magnitude of the second order effect, we rearrange the
marginal effect of renewables on emission factors from (1) to

β2 =
∂ (ln (φi,t))

∂ ln (Rt)
=

∂ (ln (Ei,t/Qi,t))

∂ ln (Rt)
=

∂ (ln (Ei,t)− ln (Qi,t))

∂ ln (Rt)
=

∂ ln (Ei,t)

∂ ln (Rt)
−
∂ ln (Qi,t)

∂ ln (Rt)
.

(2)
Furthermore, we denote the estimate of the marginal effect of renewables on

the installations’ emissions, i.e., (∂ ln (Ei,t))/(∂ ln (Rt)) = β′

2. Substituting β′

2

in (2) yields
(∂ ln (Qi,t)) / (∂ ln (Rt)) = β′

2 − β2,

which is the effect as if renewables had displaced all thermal capacity with-
out causing additional inefficiencies. Hence, the percentage value of expected
emissions reductions can be written as β′

2/(β
′

2−β2). In Table 4, we show the cal-
culations for each of the five models. Including all installations (column 1), we
see that the average installation achieves around 89% of the expected reductions
accounting for the additional inefficiency caused by renewables.

Our estimates are less pessimistic than that of Katzenstein & Apt (2009)
who find that CO2 emissions achieve only around 80% of the expected emissions
reductions. A possible explanation for this gap is that we apply an electricity
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(all) (base) (peak) (old) (zonal)

β2 0.028 0.023 0.049 0.037 0.012
β′

2 −0.226 −0.186 −0.671 −0.319 −0.112

β′

2/(β
′

2 − β2) 89% 89% 93% 90% 90%

Table 4: Percent of expected emissions reduction.

market perspective while Katzenstein & Apt (2009) are focusing only on two
types of natural gas generators. As pointed out by Cullen (2013), in an elec-
tricity market the reduction in production induced by intermittent renewables
may be shared among many installations which may incur smaller changes in
emission due to ramping and reduced efficiency.

4.3. Robustness checks

A test for over-identification as well as the Hausman test favor a fixed effects
model over a random effects model. Furthermore, the fixed effect model, which
literally allows for a different intercept of each installation seems to be more
plausible. Hence, we only provide results from the fixed effects model. We
use robust standard errors clustered by installation in all regressions to allow
for heteroskedasticity and correlation over time for a given installation. The
results of a Friedman test on the balanced panel, i.e., only taking into account
installations which have been active over the whole sample period, show that
the null hypothesis of cross-sectional independence cannot be rejected.

In order to account for heterogeneous slopes, we also estimate a random
coefficient model. Table B.5 shows the result of regressing emissions and emis-
sion factors on renewables, demand, and the commissioning year. The average
value of the renewables coefficient in the specification with the emission factor
as dependent variable is slightly lower than in the fixed effects model which
consequently leads to higher percentage of expected emissions reduction.20

We also checked whether the Large Combustion Plant Directive (2001/80/EC)
had impacted our results. This is a directive that restricts flue-gas emissions
from combustion plants with thermal capacity greater than 50 MW. Some plants
can “opt-out” if they operate less than 20,000 hours between 2008 and 2015.
This could have restricted their operating hours with possible effect on efficiency.
Only few Italian plants opted out of the directive and only eight are in our fi-
nal dataset (a ninth power plant was in the initial database but it was taken
out because it had an emission factor larger than two).21 Running our main
regressions excluding those eight installations does not substantially change the
coefficient of interest, as shown in Table B.6.

Furthermore, we show a specification in Table B.7 where we interact renew-
ables with the age of each installation. Hence, we regress the emission factor
for each installation and year on this new variable which also varies over time

20The standard deviations of the coefficient estimates of ln(Rt) are 0.03 in the model with
ln(φi,t) as dependent variable and 0.58 in the model with ln(Ei,t) as dependent variable.

21The list of the plants that opted out is available on the website of the European Environ-
mental Agency: http://www.eea.europa.eu/data-and-maps/data/lcp.
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and installation. In addition to installation fixed effects, we add time fixed ef-
fects in order to capture the variation in demand and the like. The coefficient
of the interaction term is positive and significant in all specification except for
the peak-load sample and the old vintages sample. Both samples suffer from
a low number of observations since the majority of installations is qualified as
base-load. The interpretation of the coefficient is difficult, since we cannot dis-
entangle the effect of age and renewables, but the significance of the variable
provides further evidence of a plausible identification strategy.

As a final robustness check, we present the results of a linear specification
instead of the log-log specification in (1). Table B.8 shows the results thereof.
The coefficient of renewables is statistically significant in all specification except
for the peak-load sample. The coefficients of renewables is larger in all specifi-
cations than the absolute value of the residual demand coefficient. This means
that the emission factor increases more when annual renewable generation rise
by 1 TWh than it would decrease when annual residual demand fall by 1 TWh.

These exercises demonstrate that our derived results are robust to different
methods of estimating the effect of renewables on emissions.

5. Conclusion

In this paper, we show that electricity generation from intermittent renew-
ables has had a measurable negative effect on the efficiency of Italian thermal
installations between 2005 and 2014. While the emissions of the average instal-
lation have been reduced, the emissions relative to output have increased. Our
results show that intermittent renewables lessen the emission reduction by 11%
for the average installation. At the current levels of PV and wind generation in
the Italian power system (around 14% of annual gross electricity production in
2014), the emission factors of base-load installations are less affected than that
of peak-load installations. However, when relating the emission factors to the
offset emissions, both types seem to be equally affected. This may change in
the future as the penetration of renewables increases, especially when PV forces
base-load plants to ramp down at noon.

Our work shows that the impact of PV and wind on the efficiency of thermal
installation is effectively a second order impact on emission reductions. However,
it is not too small to be completely neglected either, especially in the future,
when the increase in the penetration of renewables will affect much more base-
load installations, which are less capable of coping with variable load-profiles.

Our results suggest two main policy implications. First, the tangible re-
duction of emission efficiency adds another reason for designing and supporting
methods to mitigate the impact of intermittency such as the development of
storage, extension of the transmission networks, and demand side management.
Second, the path towards the full decarbonization of the power sector is long and
we still need a large generation capacity from conventional technologies, at least
in the next decade. The efficiency reduction translates into a higher generation
cost for thermal power plants, in particular for base-load power plants that were
designed to operate in a different environment. This may increase the impact of
renewables on the so-called “missing money problem” (Hildmann et al., 2015)
which is the difficulty faced by conventional generators in recovering investment
costs in a liberalized market.
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The main limiting factor of our study is that the emissions of European
installations are currently monitored only on an annual basis. This forced us to
do a yearly analysis despite having information on installation production at an
hourly level. Furthermore, this did not allow us to factor in the different effects
of PV and wind on installation level emissions, because of the high correlation
in the yearly observations. A better data set is also needed to incorporate the
effect of other causes which may affect the emission factor, e.g., the reduction
of available capacity due to outages or due to the exercise of market power.

Our analysis can be further developed in several directions. In addition to
trying to disentangle the effect of PV and wind on emissions, an important
extension would be to evaluate how increased inefficiency affects the cost of
generation, and thus the evolution of the power market. Furthermore, an in-
depth analysis on the effect of renewables on re-dispatch and balancing markets
can be a very interesting topic for future research.
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Appendix A. Additional figure
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Figure A.5: Aggregated emissions relative to aggregated production by fuel type.

Appendix B. Results of alternative econometric models
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(all) (all)
Dependent variable ln(E) ln(φ)

Residual demand 2.152∗∗∗ −0.156
(0.419) (0.092)

Renewables −0.441∗∗∗ 0.016∗

(0.096) (0.008)
Age −8.342∗∗ 1.146

(2.799) (0.941)
Input cost structure −0.011 0.018

(0.123) (0.035)

Observations 694 694
Installations 80 80

Notes: All variables in natural log form.
Bootstrapped standard errors in parentheses.
Asterisks indicate statistical significance at
5% (∗), 1% (∗∗), and 0.1% (∗∗∗) levels.

Table B.5: The effect of renewables on emission factors
applying a random coefficient model without constant and
bootstrapped standard errors.

(all) (base) (peak) (old) (zonal)

Residual demand −0.027 0.051 0.027 −0.110
(0.131) (0.181) (0.241) (0.144)

Renewables 0.031∗∗∗ 0.028∗∗∗ 0.047∗ 0.041∗∗∗

(0.008) (0.008) (0.021) (0.011)
Age 0.213∗∗ 0.148∗ 0.234∗ 0.132 0.198∗∗

(0.067) (0.072) (0.104) (0.100) (0.066)
Input cost structure −0.034 −0.079 −0.004 0.014 −0.024

(0.040) (0.064) (0.057) (0.022) (0.041)
Residual demand (zone) −0.061

(0.105)
Renewables (zone) 0.013∗∗

(0.004)

Installation fixed-effects Yes Yes Yes Yes Yes
R2 within/between 0.17/0.55 0.16/0.60 0.14/0.23 0.23/0.50 0.16/0.53
Observations 647 463 184 317 647
Installations 81 60 24 35 81

Notes: All variables in natural log form. Robust standard errors clustered by installa-
tion reported in parentheses. Asterisks indicate statistical significance at 5% (∗), 1%
(∗∗), and 0.1% (∗∗∗) levels.

Table B.6: The effect of renewables on emission factors excluding installations which opted out from the
European large combustion plant directive.
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(all) (base) (peak) (old)

Renewables x Age 0.214∗∗ 0.167∗ 0.196 0.022
(0.065) (0.069) (0.130) (0.112)

Installation fixed effects Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes
R2 within/between 0.18/0.53 0.16/0.48 0.19/0.20 0.24/0.20
Observations 721 508 213 337
Installations 89 65 27 37

Notes: All variables in natural log form. Robust standard errors clustered
by installation reported in parentheses. Asterisks indicate statistical sig-
nificance at 5% (∗), 1% (∗∗), and 0.1% (∗∗∗) levels.

Table B.7: The effect of renewables interacted with age on emission factors applying a
log-log specification.

(all) (base) (peak) (old) (zonal)

Residual demand −0.0006 −0.0002 −0.0005 −0.0008∗

(0.0003) (0.0004) (0.0007) (0.0004)
Renewables 0.0010∗∗ 0.0009∗∗ 0.0024 0.0019∗

(0.0003) (0.0003) (0.0015) (0.0007)
Age 0.0079∗∗ 0.0068∗∗∗ 0.0053 0.0039 0.0073∗∗

(0.0024) (0.0019) (0.0044) (0.0020) (0.0024)
Input cost structure 0.0007 −0.0005 0.0007 0.0013∗ 0.0006

(0.0006) (0.0008) (0.0012) (0.0007) (0.0007)
Residual demand (zone) −0.0008

(0.0007)
Renewables (zone) 0.0044∗

(0.0018)

Installation fixed-effects Yes Yes Yes Yes Yes
R2 within/between 0.16/0.48 0.18/0.59 0.13/0.09 0.18/0.40 0.13/0.46
Observations 721 510 213 337 721
Installations 89 65 27 37 89

Notes: All variables are in levels. Robust standard errors clustered by installation reported
in parentheses. Asterisks indicate statistical significance at 5% (∗), 1% (∗∗), and 0.1% (∗∗∗)
levels.

Table B.8: The effect of renewables on emission factors applying a linear specification. Residual
demand and renewables in TWh.
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