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Abstract

We show that the asymptotic distribution of the estimated
stationary roots in a vector autoregressive model is Gaussian.
A simple expression for the asymptotic variance in terms of the
roots and the eigenvectors of the companion matrix is derived.
The results are extended to the cointegrated vector autoregres-
sive model and we discuss the implementation of the results for
complex roots.
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1 Introduction

In a stationary vector autoregressive model the estimated coefficients are
asymptotically Gaussian, see Anderson (1971). In this note we show that
the asymptotic distribution of the estimated stationary simple roots is
also Gaussian, and derive a simple expression for the asymptotic variance
matrix. We thereby extend and simplify results by Wymer (1972).

In order to prove this, we give a necessary and sufficient condition
for a root of the characteristic polynomial to be a simple root, that is
have multiplicity one, and use that a simple root is a continuous and
differentiable function of the coeflicients in the model.

The results are shown to hold also for the stationary roots of a
cointegrated vector autoregressive model by investigating the compan-
ion form for the stationary cointegrating relations and the differences.
Finally it is shown how the Arcsin transformation helps eliminate a sin-
gularity of the variance when a root is close to one.

In Section 2 the roots and the companion form are investigated, and
in Section 3 we find the asymptotic distribution of the simple eigenvalues.
In Section 4 we extend the result to the cointegrated vector autoregres-
sive model and discuss some issues in relation to the calculation of the
variances. We conclude in Section 5 with a few simulations to illustrate
the results.

2 The roots of an autoregressive process

Let the n—dimensional process X; be given by the vector autoregressive
model
Xy =L Xy + 1 Xy o + TI3Xy 3 + &4, (1)

where ¢, are i.i.d. with mean zero and variance matrix {2, and the initial
conditions are fixed. We have taken three lags for notational convenience.
We define the characteristic polynomial as

[(p) = p’I, — p’TI; — pll — 1T, (2)
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with determinant |II(p)| and derivative
I1(p) = 3p°1, — 2pIl; — ;. (3)

We let py, ..., pm denote the roots of

and associate with each root p the n—vectors 7, and x,, with the property
that

7 T(p) = 0, T(p)r, = 0. (4)

Note that in general the roots and the vectors 7, and k, may be
complex valued. Hence if 7 = 7, +1i7;, we use the notation 7 = 7/ —ir/ =
7,. The vector 7, corresponds to the root p. Note also that if p is not a
simple root, the vectors 7, and x, are not unique. For any full rank
(complex) matrix a (n x m), m < n, we define a; (n x (n —m)) of full
rank, so that a*a; = 0. We give in the next theorem a condition on II(p)
to ensure that pg is a simple root. The result is a slight reformulation of
Theorem 3 from Johansen and Schaumburg (1998).

Theorem 1 If py is a root of the equation

then TI(pg) = ab* where a and b are n X r matrices of full rank for some
r < mn. It then holds that py is an (n — r)—double root if and only if

|a* 11(po)b.| # 0. (5)

In this case
|a*al|b*b|
(@, a1 )*]|(b,bL)|

and I1(p)~ has a pole of order 1 at py :

TI(p)| = (p — po)" ™" | 1(po)bL|(1+ O(p — po)), (6)

(o)™ = ———b (e} (pm)b) a1 +O(1) (7




Proof. The matrix polynomial II(p) has the expansion at p = pg

I(p) = I(po) + (p — po)IL(p), (8)
where the polynomial II(p) satisfies II(py) = II(py). Because II(pg) is
singular, it has the representation

H(pO) = a’b*a

where a and b are n x r matrices of rank r < n. Now multiply (8) by the
full rank matrices (a,a,)* and (b,b,) and we find that

(CL, aL)*H(p)<bJ bJ-)

(79 g ) == (o)
This relation immediately implies the result about the determinant
(6) and the expression for
Lim (p — po)I1(p) ™" = lim (p — po)(b,b1) [(a, a1 ) TL(p) (b,0.1)] " (a,a1)",
which shows (7). H

As a special case of Theorem 1 we find that p is a simple root (r = 1)

if and only II(p) = ab*, with @ and b of rank n — 1, and a* II(p)b, # 0.

In this case we associate to p two vectors 7, = a; and x, = b, which we
normalize by

(o), = 1, (9

see (5).

We give a result on the differentiablity of a simple eigenvalue as
function of the coefficient matrices, see Magnus and Neudecker (1995, p.

161)

Theorem 2 Let Iy(-) be a matriz polynomial with a simple root at pq.
IfTI(-) is close to Tly(-), then it has a simple root close to py. This defines
a continuous function p(Il) in a neighborhood of Ily. The function is also
differentiable with differential

dp = —7; (@) (), = —7 (PP(dT) + p(dT) + (dTTs))s,. (10)



Proof. From the relations (2) and (3) we find, by taking differentials,
that

A(T1(p)k,) = T1(p)riy(dp) + (dIT) (), + TI(p) (diy) = 0.

Multiplying by 7 we get, since 7;11(p)x, = 1 and 7,1I(p) = 0, that
1)k, (dp) + 75 (dID)(p), + T3 T1(p)(dkp) = dp + 75 (dIT) (p)r, = 0.

2.1 The companion form of the vector autoregres-
sive model

The companion form of (1) is

Xt = AXt—l + Bey, (11)
where
X I, I, IIs I,
Xt - Xt—l ,A - In 0 O ,B - 0
Xt—2 0 In O 0

It is well-known that
|pI3, — Al = |TI(p)],

see for instance Johansen (1996, p. 16), which implies that the roots of
ITII(p)| = O are the same as the eigenvalues of A. A right eigenvector is

iy = b, (p* Ly I, 1), (12)

where k, satisfies II(p)k, = 0. Similarly a left eigenvector 7, for A
satisfies

7y =75 (L, pIn = Iy, p I, — pTly — TI), (13)

where 7, satisfies 7,TI(p) = 0, see (4). Further we find from (12) and (13)
that
Fikp =71 (3p° — 2pIL — Iy)k, = T311(p)k, = 1, (14)
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by the normalization of k, and 7, see (9) and (3). From the equation
AR, = pR,,

which is equivalent to II(p)k, = 0, we find the differential (10) can be
written

dp = 7,(dA)F,. (15)

In the following we sometimes work with the assumption that all
roots are simple roots. In this case they are denoted pi,k = 1,...,m,
and the corresponding vectors are 7y, 7x, Kk, Kx. From the relation

T AR = prTi R = T Raupr, (16)

it follows that for p, # p;, the vectors K, and 7; are orthogonal in the
sense that 7k, = 0.

The relations (14) and (16) can be summarized as

~ * ~

(’7’1, Ca ,Tm) = (/231, . .,lﬁ}m)_l.

3 Asymptotic distributions

We first discuss briefly the asymptotic distribution of the estimated co-
efficients in the autoregresive model, Anderson (1971), and then apply
the differentiability of the roots to derive the asymptotic distribution of
the estimated roots. The parameters in (1) are estimated by regression
and for stationary processes (|px| < 1,k =1,...,m) it holds that

A

T3[(ITy, Ty, Ts) — (I, Ty, TM3)] % Nppvsn(0, 2 © £70).
The variance matrix X is defined as
> = Var(X;) = Var(X}, X|_,, X|_,)/,
and can be found from

> = ASA + BQB'. (17)



The asymptotic distribution of
T2(A— A) = B(Il; — Iy, T, — II,, 13 — II3)

is therefore Gaussian in (3n x 3n) dimensions with mean zero and asymp-
totic variance matrix

N[

asVar(T3(A— A)) = BOQB' @ 2.

An estimate of the variance € is found from the regression, and ¥ can
be estimated from (17).

Theorem 3 Let X; be the stationary autoregressive process given by (1)
with characteristic polynomial (2). If p is a simple root of |II(p)| = 0
and the vectors 7, and k, satisfy T,11(p) = Il(p)k, = 0 and (p)k =1,
then T2(p — p) has the same limit distribution as

N[
N |—=

T27,(A— Ak, = =T27,11(p)k,,
that is, asymptotically Gaussian with mean zero.

If pr. and p; are simple real roots the asymptotic covariance is
asCov(T2dpy,, T2dp,) = TLQm i S & (18)

If pr. and p; are simple complex roots the asymptotic covariances are given
in terms of the matrices

kl kl / /
kl __ Wy Wry _ TerTT‘l TerTil
we= Koo, k| T ,

! !
Wi Wi; Tl TR QT
kl kl ~/ —1~ ~/ -1z
’Ykl _ Vrr Vri _ Kjrkz Kri ’l{rkz Kil
- kl kl - ~/ — ~/ —1z :
Yir  Vii R Ryl K2 K

The asymptotic variances and covariances of the estimated real and imag-
inary part of the roots are given by

asCov(T3dp, Tidpy) = whakl + Wik + Wl 4+ Wiyl (19)
asCoo(T2dpy, T2dpy) = whAkl — Wkl — Wiyl + Wy (20)

aSCOU(T%d,ﬁrk, T%dﬁil) = WO~ W Y — Wi T Wi (21)



Proof. From the continuity of p(II) and the consistency of II, it follows
that also p is consistent. From the differential (10) and (15), it follows
that

T2(p— p) = T?7 (A = A, + op(1) = =T 1(p)r, + 0p(1)  (22)

which should be compared with Wymer (1972, page 575), where
vec(diag(dpy, . ..,dpn)) is found in terms of a matrix derived from the
eigenvectors.

We first assume that p, and p; are two simple real roots, in which
case we get from (22)

asCov(T2dpy, T2dp,) = 7. BQB 7R, "R,
which proves (18).

If p;, and p; are two simple complex roots the formulae are somewhat
more complicated. We get from (15) that

dp = (7 —i7)dA(R, + iF;)
= F(dA)R, + 7 (dA)R; + (7 (dA)R; — 7/ (dA)R,),
= dpr +idp;,
and hence in terms of w* and v*, we find the results in (19), (20), and
(21). =

If all the roots are simple the variances can be expressed in terms
of the quantities 757, p, and p; :

Corollary 4 Let X, given by (1) be stationary and assume that all roots
are simple. We define the matriz © with elements

0
O =
L — prpu

If all roots are real we get

!
7, QT1;

asCov(T%dﬁk,T%dﬁz) = TIQQTl(l
— PiPj

)kl = T,QQTl@kl. (23)




In general, if all roots are possibly complez, we have the expressions (19),

(20), and (21) with

b 1( o + ey @fl—@fl‘)

5 —_@k _ @1;[ Qrl _ @kl‘ (24)

where [ is defined by pr = p;.

Proof. From (13) it follows that 7B = 7, and from (17) we get
YT = T ASA'F 4+ 7 BOB'F = pppiii 27 + 100n

since A'7; = p;7;, and hence

£
Fon= k"L — @,
L — prpu
Note that © in general is a complex matrix which is self-adjoint: © = ©*.
For 7 = (71,...,Tm) we get
FiY Rk = Rir (T 8T) TR = €,07 e = OF, (25)

the kl'th element of ©~!. This proves (23).
From the relations
OM = BN~ Ry = (Rpp — iR D7 (B + i) = vy + v + 1005 — Yir)
OM = RIS TVR, = (R, — 1Ry ST (R — iRa) = v — i — i + Vi)
we find the expression (24) for v*'. H

A simple example is a bivariate system with one lag and two real
roots, where the asymptotic variance of the estimated roots is

' ' Qro -1
/ / 1 1
’7'197_1 7_1Q7-2 ° 1—p% 1—p1p2 (26)
T4QT T5Q1 .

/ /
07T 1O
27711 TRti2 1—p1p2 1—p3

Here the e denotes the element-wise product. For a univariate system
with one lag this simplifies to the well-known result that the asymp-
totic variance is 1 — p®. It is seen from (26) and in general (18) that

8



the expression for the asymptotic variance matrix is independent of the
normalization of the eigenvectors {7}.

The matrix ©~! can be calculated using real matrices as follows.
The complex number 7;{27; is represented by the matrix

Tl  Th Q0 Tr —Til
—Th Tl 0 Q T T )

and (1 — prp1) by

(1 O>_<prk _pik>< Pri pil)

0 1 Pik  Prk —Pil Pri

In this way we obtain an expression for © as a 2m x 2m matrix, the
inverse of which represents ©~! with 2 x 2 blocks of the form

oF o
@kl — ( @fil @fl ) .

4 The cointegrated VAR

In this section we show how the above results of Section 3 hold for the
stationary roots in a cointegrated I(1) process. Let X; be an I(1) process
given by the vector autoregressive model (1), but reparametrized as

AXt = Oéﬁlxt_l + FlAXt_l + FQAXt_Q + &t. (27)
The parameters are related by

I =L, +aof +T1, of =11 + 1, + 113 — I,
I, = —I'y + Iy, I'y = 11 — 15,
s = T, Iy = —IIs.

In terms of the new parameters we find
(p) = —p*(1 = p) I — p°af' + p(1 — p)T1 + (1 — p)T2.
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Note that II(1) = —a/f’, has reduced rank, which causes the nonsta-
tionarity of X;. From the companion form (11) we derive the companion
form for V; = (X[0., X{0, AX],AX] |)

Y, = KAK™'Y, 1 + KBe; = MY,_; + Ne,,

with
! 0 0 -
% 0 0 b 60 0
K = I 7 0 7K_1 — @J_ @ _In 0 )
and
iy  Pla BT B B
/ / / /
M:KAK—l_ 0 ]7""'605 ﬁrl BFQ ,N:KB: ﬁ
0 « Fl FQ In
0 0 I, 0 0

For the stationary process Z, = (X3, AX],AX] ;) we have the equa-
tions
Zy=PZi_ 1+ Qe

with
I +Ba BTy BT B’
P = o I'y I's , Q= 1,
0 1, 0 0

It follows from (12) and (13) that the eigenvectors of M satisfy

k(M) = #,(0° I, pIn, 1n) K,

T;(M) = T;(]n, pl, — Iy, p?I, — pll; — II) K1,

A calculation then shows the following result:

Lemma 5 If X; is an I(1) process given by (27), then the companion
matrix P for the stationary part of the process and the companion matrix
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M have the same eigenvalues apart from the unit roots of M. If p is a
root of M, then a right eigenvector is given by

"ilp(M) - "i/p(pQQLJ p2ﬁ7 (IO o 1)pIn7 (IO o 1)‘[”))
where II(p)k, = 0, and a left eigenvector is

1
7, (M) = 7,(0, Eau p~2(pl1 +Ta), p~'Ty),

where T;H(p) = 0. The corresponding eigenvectors of P, for p # 1, are
"\%lp - /{,p(p267 (p o 1)IOIn7 (IO o 1)In)7

> =7 (A7, p 2 (ply + o), p7'Ty),

which are normalized on

TRy = T:ﬁ(p)/ip = 1.
4.1 Asymptotic distribution of eigenvalues and im-

proved approximation for p close to 1

In a cointegrated VAR we estimate the coefficients a and (8 by reduced
rank regression of AX; on X;_; corrected for AX;_1, AX;_», see Johansen
(1996) or Anderson (1951). Because the estimate of 3 is 7! consistent,
we determine the asymptotic distribution of the other coefficients by
regression of AX; on (0'X;_1,AX; 1, AX; o) where [ is replaced by B
We find that T2 (& —a, [ —Ty,Ty— I['y) is asymptotically Gaussian with
mean zero and variance
Qe U

where ¥ denotes the variance of the stationary part of the stacked process
U = Var(8' Xy, AX;, AX, ),
which, as in the stationary case, can be found from the equations
U =PUP +QNQ". (28)
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From

we find
T2#(P - P)i, = —T3#:Q(I(p) — I(p))r, = —T273(I(p) — I1(p) k.

As in (15) we find
dp = %5 (dP)k,

and we can summarize the results in

Theorem 6 Let X; be the cointegrated I(1) process given by (27), and
let |TI(p)| = 0 have n — r unit roots and define

U = Var(ﬁ’Xt, AXt, AXt—l)y
then the conclusions of Theorem 8 and Corollary 4 hold with ¥ replaced

by U.

The above result holds for stationary roots. In order to see what
happens if a root p;, say, tends to 1, consider the result for two real roots,
see (26). In this case the variance is

(1 - p*)71Qmn i) . TQm v Qn -
pTsSdTy (1 — p2)75Qms vy THOT

with

(1—p1)(1— p3)

— /(1 - 21-2,u::¢ .
p=/1-pR)(1-73) s

For p; — 1 it holds that y — 0 and v — 0, and the variance matrix

converges towards

0 0 (T 0 T _ (0 0
0 (1— p3)mQmn 0 70n N0 (1-p)
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Thus the variance of p; tends to zero for p; — 1, and simula-
tions show that we get a very skew and concentrated distribution. It is
therefore convenient to transform the roots before confidence interval are
found.

For y = sinz, €] — 3, 37|, we find z = Arcsin(y), y €] — 1,1]
and dx/dy = 1/,/(1 — 2?). We introduce the Arcsin transformation of

the roots which eliminates the factor (1 — p?) and find

Theorem 7 If all roots are real and distinct the asymptotic distribution

of

=

T? (Arcsin(py) — Arcsin(pg)),k=1,...,m

1s Gausstan with mean zero and variance matriz given by
! / -1
{TlQTk} ® {TlQTkal} ,

with vy given by

VA= p2)(1—p})

Vi = .
L = prp

1
Proof. The asymptotic distribution of {T2 (pr — pk)} has covariance

matrix with elements given by (23). It follows that the asymptotic co-
variance matrix of the vector

{T% (Arcsin(py) — Arcsin(/)k)>}

is given by the matrix with elements

7.7

78)T; )kl 7,8)7; )kl

L = pip;

JL= = 1=

= 7 Qn(\/(1— p2)(1 — p?)
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5 Simulations

In this section we simulate a bivariate system in order to get an impres-
sion of the distributions and some confidence intervals. We take T' = 100
and the number of simulation is 200. We simulate the system

<X1t>:<All A12><X1t—1)+<51t>
Xoy Ag Ay Xot_1 €t

where ¢; are i.i.d. N(0,), with

0_ 1.25 1.55
155 298 )7
and A is chosen to give suitable roots. Figure 1 shows the estimated
roots if we have a process with the roots 40.5:. It is seen that the real

and imaginary part have a joint distribution which is described by the
variance matrix given by the relations (19), (20), and (21).

Next consider in Figure 2 the simulation of a system with two real
roots at +0.5. It is seen that all estimated roots are real, and the distri-
bution is given by the variance in (18). If, however, we consider Figure
3, where the roots are 0.9 and 0.5, we see that the empirical distribution
spreads into the complex plane, a phenomenon that is not captured by
the asymptotic distribution, which is concentrated on the real axis. Thus
the finite sample performance of the estimated real roots needs further
study.

An explanation of this phenomenon is the following. The char-
acteristic equation is of second degree and the roots are found as the
intersection of a parabola with the z axis. If the estimated parabola is
sufficiently close to the true one, assumed to have two real roots, the
estimated roots are real too. If, however, the random coeflicients have
perturbed the parabola so much that it does not intersect the x axis,
then the roots become complex.

This is a relevant observation also for a discussion of unit roots,
where one sometimes finds that there are two complex roots with rather

14



large absolute value. The question then is whether one of them or possi-
bly both are unit roots. Obviously if we have two unit roots we sometimes
will observe two complex roots with a high modulus, but even if we have
roots at 1.0 and 0.9, say, the random variation could be such that we
observe two large complex roots with a real part of .95.

In the simulation in Figure 4 we have a root at 0.95 and a root at
0.5. It is seen in Figure 5 that the distribution is highly skewed, and the
Arcsin transformation makes it a lot more symmetric in Figure 6. The
last Figure shows a 95% confidence ellipse for a bivariate time series with
T = 50 observations. The simulations were performed in RATS 4.20.
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