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Abstract

The notions of instrument, intermediate target and final target
are defined in the context of the cointegrated VAR. A target vari-
able is said to be controllable if it can be made stationary around
a desired target value by using the instrument. This can be ex-
pressed as a condition on the long-run impact matrix. Applying
a control rule to intervene in the market changes the dynamics of
the process and the properties of the new controlled process have
to be derived. The theoretical results are applied to US monetary
data on a daily and monthly basis. The empirical results do not
provide support for the widely held belief that the Federal Reserve
Bank can bring US CPI inflation down by increasing the federal
funds rate.
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1 Introduction

Monetary policy reaction rules have recently obtained a lot of attention.
The original idea, first suggested by Taylor (1993), was to describe a cen-
tral bank’s policy decisions by a simple rule that associated changes in the
monetary instrument with the discrepancy between the target variable
and its desired value and with the state of the economy summarized by
some key macroeconomic variables. Further developments have included
different models and approaches (forward looking rational expectations
versus adaptive expectations, micro foundations versus no such founda-
tions), see for example the collected papers in Taylor (1999), Clarida,
Gali and Gertler (1998) and references therein. Most of the applications
contain the following elements: a formulation of a monetary policy rule
for the central bank, estimation of a model for the economy (usually a
VAR), derivations of the implications of the proposed rule, and finally
an investigation if monetary authorities have followed the suggested rule.
In general, the papers do not ask under which conditions the ultimate
targets, or the goal variables, can be controlled given the instruments
and the mechanisms of the economy. This is the purpose of the present

paper.

The diagram in Table 1 illustrates the relation between monetary
instruments, intermediate and final targets (or goals). The central bank
changes the instruments in order to influence the goal variables via some
intermediate targets. For example, a central banker may change the
reserve requirements of the private banks (quantity control) to influence
the level of money stock in the economy, under the assumption that (7)
there is a direct relationship between the level of money stock and the
price level and (i7) the level of causation goes from money stock to prices.
Alternatively, a central banker may change the discount rate (direct price
control) or engage in open market operations (indirect price control)
under the assumption that this will influence the market interest rates,
and eventually aggregate demand (GDP growth) and money demand
(money stock).



Table 1: Elements of monetary policy

Instruments: Intermediate Targets Final Targets

® Reserve requirements
on private banks — @ Money Stock — o Inflation Rate

® Central bank interest

rates — @ Market Interest — o GDP Growth
® Open market operations Rates
® Interventions in the — @ Exchange rates — @ Purchasing
foreign currency market Power Parity

In practice the time it takes for a policy intervention to influence the
final target has generally been found to be long and difficult to predict,
whereas the response of an intermediate target is more immediate and,
therefore, easier to estimate empirically. Moreover, the interventions take
place on a daily basis, but the inflation rate, the target variable, is only
measured on a monthly basis. Hence, the direct evaluation of the final
impact of a monetary intervention on the goal variable is often difficult.
Because of this the assessment of monetary policy has often been based
on models containing intermediate targets and goal variables, but not
necessarily the instrument variables. The paper demonstrates that this
can still be a valid procedure if the intermediate target can be controlled
by the central bank authorities and if it cointegrates with the final target.

The empirical application, which is based on US data, approaches
the empirical assessment of the policy control problem in two levels: In
the first step we examine whether the Federal Reserve Bank is able to
control the short-term market rate (here the 3 months tbill rate) using
the federal funds rate as an instrument. In the second step we examine
whether the thill rate can be considered an appropriate intermediate
target, defined as being cointegrated with non-zero coefficients with the
final target, the inflation rate.

A basic assumption here is that the VAR model is capable of satis-
factorily describing the dynamics of the data and that the equations for
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the variables that are not subject to intervention remain the same before
as after the intervention. In such a model we say that a target variable
is controllable if it can be made stationary around a given mean. Thus,
for a nonstationary target variable we want to achieve both stationarity
and the desired mean.

For ease of exposition, the general theory for applying a linear con-
trol rule is given in the Appendix, whereas the main bulk of the paper
discusses a simple rule that appears natural for the cointegrated VAR
models we consider here.

The control problem is formulated in Section 2: A formal definition
of an instrument, an intermediate target, and a final target is given and a
natural control rule is formulated that exploits the dynamics of the VAR
process. Section 3 derives the properties of the controlled process, i.e.
the process that arises as a consequence of applying the derived control
rule all the time.

The empirical illustration is discussed in Sections 4 and 5. The con-
dition for controllability of an intermediate target is checked in Section 4
using daily observations of the US federal target rate, the federal funds
rate and the 3 and 6 months treasury bill rates. Section 5 investigates
whether the Federal Reserve Bank can control the inflation rate, given
the estimated relationship between the instruments and the intermedi-
ate targets and the transmission mechanism of the macroeconomy. The
latter is described by a VAR of real money, output, inflation rate, the 10
years bond rate, the 3 and 6 months treasury bill rates, the federal funds
rate, and the federal target rate. Section 6 concludes. In Appendix A
the results on the general linear control rule are given and Appendix B
contains various graphs of the data.

2 Definition of the control problem

We assume that the transmission mechanism of the economy can be
described by the cointegrated VAR (k) model given in the error correction
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form:

k—1
Az, —y=a(fzi1—p(t—1)—p) +Zri(Axt7i -7 +ent=1,....,T,

i=1

(1)
where z; is p—dimensional, a and § are p X r of rank r, I'; is p X p, v is
p x 1 and p' = #'y. The errors are i.i.d. with mean zero and variance Q.

To simplify notation in this section the basic definitions are intro-
duced for the cointegrated VAR(1) model without trend, i.e. for I'; =0
for all 4, v = 0. The equation (1) then becomes

Az, = a(B'zy 1 — p) + &, (2)

which defines a cointegrated I(1) process if and only if the parameters
satisfy the restriction

leig(I, + B'a)| < 1, (3)

that is, the eigenvalues of I, + '« have absolute value less than one. In
this case the process is represented as

t
n=C)Y eit+y+A+afa)y,

1=1

where A depends on initial values (3’A = 0), ¥, is stationary with mean
zero and hence 3'x; = B'y,+u is stationary with mean u, and the long-run
impact matrix is

C=p.(c B1) ) =1, —a(fa)”' 7, (4)

where o is a p X (p — r) matrix of full rank, so that ’'a; =0. If « =0
(so that there is no equilibrium error correction) then o, = I, (i.e. p
autonomous stochastic trends in the data), and if a = I, (i.e. z; ~ I(0))
then a; = 0 (no stochastic trends in the data). Condition (3) implies
that /'« has full rank, and this is equivalent to |a/, .| # 0, so that C
is well defined. Since §'z; is a VAR(1) process with coefficient matrix
(I, + B'a), the condition for stationarity (3) rules out unit roots and
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Figure 1: At the point 2, = (R;,m) the process is moved to z{" by
changing the nominal interest rate R;. If the errors were switched off,
the process would move from this position along the direction of —a to
a point where inflation m;, = 7*.

explosive roots, see Johansen (1996, Theorem 4.2) for proofs. We define
the attractor set by

{z|0x = p} = a(B'a)  u+sp(BL). (5)

Figure 1 illustrates the adjustment dynamics of the process, which
for the simple VAR(1) are given by the vectors +a. Since they point
towards the attractor set, the process is pulled towards the latter with
a force that depends on the magnitude of the distance #'z; — . Thus,
for points on the attractor set the force is zero and there is no tendency
to move away, and such points are called equilibrium points or steady
state points. The common trends o/, Zle g; push the process along the
attractor set and generate the nonstationary behavior of the process.

The solution of (2) with initial value xy can also be written as

t—1

wr = (In+af) wo+ Y (In+af) (e —ap). (6)
1=0
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The following result is based on (6):

Lemma 1 For the I(1) process x; given by (2) the expectation E(x;|xq)
converges to

Too = tlim E(z¢|z0) = Cxg + a(B'a) i,

the long-run expected value, which is a point in the attractor set.

Proof. From the relations
of (I, +af) = and F'(I, + af') = (I, + f'a)'
it follows from (6) that

E(d\ z]zg) = oz,
E(§'zi|zo) = (I + F')'B'wo — YiZg(Lr + Fa)'Flap

— —> 2oL+ B o) ap = p.

Hence, using (4) we find
E(zz0) = BL(a BL) E( 24|xo)+a(B'a) E(B' x| z0) — Caot+a(Ba)  u.

Because 31, = 3 (Czo + a(f'a) 'u) = p, it follows that z, is in the
attractor set (5), i.e. is an equilibrium, or steady state point. We say that
the position xy aims at the long-run expectation x.,. See also Proietti
(1997), Bruneau and Jondeau (1999), and Bedini and Mosconi (2000).
[ |

The following definitions are needed for the discussion of control
theory in terms of instruments, intermediate and ultimate targets:

Definition 1 (i) Instrument variables o'z, (a (p x m)) have the property
that we can change them by an intervention, so that the value a'z; is
replaced by a'xy + v, for any v € R™.
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(ii) Final or ultimate target variables 'z, (b(p x m)) are the vari-
ables we would like to make stationary with mean b*, the desired target
value. The target space is given by the positions x which satisfy

{z|b'z = b*}.

(iii) Intermediate target variables 'z, (¢ (pxm)) are variables that
are cointegrated with the final target b'x;, so that there exists a stationary
relation 'z, + ¢b'x, where the matriz ¢ (m x m) has full rank.

After an intervention that changes the current value of a’x; to a’x;+
v the controlled value of the process x; becomes:

o =a,ad 2" +ad 2" =a ad x +ald v +v) = 3 + av,
where @ = a(a’a)™! and a, is similarly defined. In practice the inter-
vention v will depend on current and lagged values of the process. It is
a major assumption in this paper that if the same intervention rule is
applied at all time points the equations (1) will generate a new process
7 taking into account the interventions but otherwise leaving the pa-
rameters of the model unchanged. For a discussion of the new process
see Section 3.

Definition 2 A set of target variables V' x; with target value b* is control-
lable by the intervention o'z, and the control rule (k, ko) if, by intervening
at all time points using

i =y + a(k'z — ko),

the new process has the property that the target, b'x}¢", becomes station-
ary with mean b*.

Thus, the effect of controlling a nonstationary variable is partly to
remove the nonstationarity and partly to give it the desired mean.

As a simple example consider a VAR of inflation rate, interest rate,
and output gap,

xi = (ﬂ-t? Rt? (y - y*)t)
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The central bank wants to achieve a desired inflation rate, 7*= 2%, using
the interest rate as an instrument. In this case ¥’ = (1,0,0), o’ = (0,1, 0)
and the positions in the target space that satisfy b'x; = b* are given by
Ty = 2%

A simple control rule is to replace a’x; = R; by R;~+v, and the prob-
lem is how to choose v = k'x; — Ko so that b'z; = m; becomes stationary
around 2% in the new process.

In Appendix A we derive in Theorem 5 a necessary condition for
making a nonstationary target variable stationary around a desired value
based on a general rule v = k’x; — kg. Here we focus on the derivation
of a simple control rule for a set of nonstationary targets with a natural
interpretation related to the dynamics of the process.

The idea, illustrated in Figure 1, is to move the process to a con-
trolled position z{"" by choosing the intervention v such that, if the errors
were switched off, the process z;p, h = 1,2,..., starting at z¢"", would
continue towards a point in the target space. That is, we choose v so
that

b =V (Ca" + a(f'a) ) = V(Cla +av) + o(F'a) ), (7)

see Lemma 1. For the equations to have a solution for v, the following
condition

rank(b'Ca) =m (8)
has to be satisfied. This defines the condition for controllability, see

Theorem 5 where the precise result is formulated.
If |6'Ca| # 0, equation (7) can be solved for v which, using (4),
gives us the control rule
av = a('Ca) '(b* —ba(Fa) tu—bCx) 9)
= a(b/Ca) ' [b* — bz +ba(Ba) (B — p).

The intervention (9) needed to put the process on the right track
depends on



e b* — b'x;, which is the observed discrepancy between the value of
the target variable b'z; and its desired target value b*,

e ['x; — u, which measures the deviation from steady state at the
time of the intervention.

If the economy is in steady state, as defined by the attractor set
{B'xr = p}, then the discrepancy between the target and the target value
determines the magnitude of the necessary intervention. But if the econ-
omy is away from steady state, then the magnitude of the steady state
error also affects the size of the intervention.

Controllability is defined by a condition on the elements of the
long-run impact matrix, see (4), which is defined by the orthogonal com-
plements of o and (3. Therefore, a stationary variable, which is a linear
combination of #'z;, cannot be controlled by this rule. In the simple case
of one target and one instrument, condition (8) requires that the long-run
impact of a shock (an intervention) to the instrument variable on the tar-
get variable must not be zero. Therefore, controllability is inconsistent
with long-run neutrality of target to instrument.

To summarize, we have seen that if |b’C'a| # 0 it is possible to define
a natural control rule by

" =z + a(b/Ca) (0" —Vx,) +ba(Ba) (B — p). (10)
The rule is constructed so that the position z¢" aims at the target value,
that is, so that

V(Cx™ + a(B'a) tu) = b

Figure 2 shows how the point x; is moved by the monetary au-
thorities onto the dotted line. Once there, the dynamics of the process
will take it towards the point on the attractor set defined by the desired
target value 7*, provided it is moved by the central bank to the dotted
line at all time points.



U

Figure 2: The point z; is moved by the central bank to z¢"", and the
equations generate the point z{{, which in a VAR(2) model is based

ctr : : : ctr :
upon z{"" and x;. This point is moved to z{};, and the equations generate

new ctr ctr
iy from {7 and z§"".
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3 The new process

By applying control rule (10) the instrument variable is moved to a new
position, x§", from which the dynamics of the process eventually will
bring the target variable to the desired value, 0*, given that the errors
were switched off. But, since the process is subject to new disturbances,
the process zyyp, (h = 1,2,...) will drift away from z{" and has to be
brought back to a new position which aims at a point, for which b* is
achieved. Thus, the above control rule has to be used at each point
of time, thereby generating a new process. For this process the target
variable becomes stationary around the target value, as shown below,

provided the controllability condition (8) is satisfied.

The proof of this main result is given for a general linear control
rule of the form v = k’x; — ko in Theorem 5 in Appendix A.1. For ease of
exposition we focus here on the result for the special case (10), but when
needed we will refer to some of the main results in Appendix A. We first
give a result for the simple model (2) and then for model (1).

Corollary 2 Assume that (i) the I(1) process x; is given by
Ary = a(f'zy 1 — p) + &,
(13) |b/Cal # 0, see (4), and (iii) the control rule
" = 2, + a(b'Ca) H(b* — Yz, + ba(Fa) (Bz — )

is applied at all time points. Then the new process x}°" is an I(1) coin-

tegrated VAR (1) process with cointegrating space sp(3,b) and adjustment
space sp(a,a). It follows that (i) B'z}" is stationary with mean p, (i)
bz} is stationary with mean b*, and (iii) O'Cx}" is white noise with
mean b* — b a(B'a) .

Proof. The result follows from Theorem 5 in Appendix A.1, by choosing
K = —('Ca) b0, and kg = —(bCa) ' (b* —ba(Ba)  u),
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so that k' satisfies the relations
kKa=0, I, +ra=0.

Hence, the condition for stability (19) is satisfied and g'z}" is stationary
with mean p, and 'z = —(V/Ca) 'b'Cx; is white noise around kg =
—(¥Ca) 1 (b* —ba(f'a) u). From (4) note that

YOz = —ba(Ba) 1B are.

Because §'z}" is stationary with mean u, 0'z}" is stationary around b*.

In Appendix A.1 it is shown that the control rule x'z; — kg makes
k'xz; stationary. Therefore, we could simply choose x = b to make bz,
stationary, but the results simplify considerably if x'a = 0. Since 'z,
is stationary in the controlled process, the choice of Kk = b + 3¢, for
some &, would also make bz, stationary. Therefore, we choose a & so
that K'a = Va + F'a = 0, which gives ¢ = —ba(fa)! and K =
V —ba(fa) '8 =C. After normalization this is precisely rule (10).

An I(1) process x; given by (1) has a linear trend v¢. We define

k—1

I=1I,-» I and C =B, (!, TB,) ",

=1

We apply rule (10) to the detrended stacked process, see Theorem 6 in
Appendix A.

Theorem 3 If (i) the I(1) process x; is given by the VAR(k) model (1),
(ii) ['Ca| # 0, and (iii) we apply the recursively defined control rule

zit = 2o — a(V'Ca) WO (e — yt) — b Tyt — y(t — )]
+a(t'Ca) " (b* — ¥/ (I, — CT)Bp)
(11)

at all time points, and the new process is defined by

k—1
it = 2"+ a(Faf = pt—p) + Y Ti(Aafl =) +ew, (12)
=1
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then the stacked process (xp<", x{"), ..., 25", 1) is a cointegrated VAR(1)
process with 'z} and Yz} trend stationary around p + p't and b* +
b'yt. Moreover b/ C(zpe” — S¥ ' Tyas™r.) is white noise around its mean.

It is sometimes convenient to rewrite the control rule as a function

of the equilibrium errors, 'z}, deviation of target from desired target,
and finally the differences of the process:

i =zt — q(b/Ca) L[ (27 — yt) — b*
+V/(CT = L) BBz — p't — p) + VC Y1) Ti(ape — i — i)

(13)
Proof. This result follows from Theorem 6, by the choice
K] =—WCa) e, K, =0Ca) "WCT;_1,i=2,...,k
and
ko = —(b'Ca) ' (b* — b/ (I, — CT)Bp).
Because o’k = 0, and
Fi; = —/ﬁllfi,l, 1= 2,...,k
it follows that &#’'a = 0, see (34). Furthermore xja = —I,,, and hence

k—1
VO™ = T
=1

is a white noise process around its mean.
The second expression for the control rule is seen as follows. From
Cl(xper —yt) = S, Talag, — y(t — 1))
= CT (27" —~yt) + C Z;:ll L;(zpe” — xf. — i)
and the relation
CT =(CT —1,)+1I,=(CT - 1,)33' + I,
we find that
BOT (e — At) — (b° — ¥(I, — CT))

= V(CT = L)B(0' (27" —~t) — p) + U (a7 = yt) = b*.
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Collecting the terms we find the expression (13). W

Note that 27" is not necessarily a VAR process, as it is the stacked
process that has this property.

The role of the intermediate target is given in

Proposition 4 If dx; is an intermediate target and 'z, is controllable
by the instrument o'z, then the final target is controllable by a'x;.

Proof. Let b* be the desired target for b'x;. Because ¢b'z; + c'x;
is stationary with some mean m, say, then it follows from Theorem 5
that ¢b'zye” + 'x*" is also stationary with mean m. Therefore ¢z, is
controllable and we choose to control it so that is becomes stationary
with mean m — ¢b*. It follows that

b/x?ew — ¢—1 [(¢b/$?€w 4+ C/:U?ew) . C/:U?ew}
is stationary around

¢~ [m — (m — ¢b")] = b".

4 A daily model for US data'

The theoretical results in Section 2 and 3 demonstrated that a policy con-
trol problem can be approached in two steps: In the first step we need
to establish controllability of an intermediate target by the available in-
struments and in the second step cointegration between an intermediate
target and the final target. When these conditions are satisfied we can
derive an adequate inflation control rule as a function of (i) the discrep-
ancy between the actual and desired target, (ii) the disequilibrium errors

L All empirical results both in the daily and the monthly model have been calculated
using the software program CATS in RATS (Hansen and Juselius, 1994). Some of
the graphs have been produced in GiveWin (Doornik and Hendry, 1998).

14



from the economy-wide steady-state relations, and (iii) the final impact
of the change in the instrument on inflation.

The first part of the empirical analysis reported below deals with
the relationship between the monetary instrument and the intermediate
targets, whereas the analysis of the (intermediate) targets and the final
targets and how they are related to the state of the economy is presented
in Section 5.

The purpose of the daily analysis is first to check whether the federal
funds rate has closely followed the federal target rate which is set by the
Fed. Based on Proposition 4 we then investigate whether the Fed has
been able to control the short-term market rates, here the three and six
months treasury bill rates, using the federal funds rate.

The daily analysis is based on the data vector z, = [Trg;, F'f;,
R3;, R6;|, where T'rg, is the target rate set by the Federal Reserve Bank,
Ff, is the federal funds rate, R3,; is the three months and R6; the six
months thill rate, and ¢t = 1996.01.02, . ..,1999.03.26, a total of 824 daily
observations. All data series are from the database EcoWin. The graphs
of the variables are given in Appendix B, Figures 8, 9, and 10.

Although the federal funds rate is not directly determined by the
Fed the very close correspondence of the two graphs in panel (a) clearly
demonstrates that for practical purposes it can be assumed set by the
Fed. The remaining panels (b) and (c) show each of the tbill rates relative
to the target rate. Since the target rate has generally been on a higher
level than the treasury bill rates, the graphs have been mean adjusted
to facilitate a comparison. Figure 8 shows that the target rate does
not satisfy the stochastic assumptions underlying the VAR model. It is,
therefore, treated as an exogenous variable and model (1) is modified
accordingly:

k—1

Ay, = Oé(ﬁlxt—l_ﬂ)“‘z [iAz, i+ AgAz+PD+e, t =1,...,T, (14)

i=1
where =} = [y, 2|, 2t = Trgs, y, = [F'fi, R3., R6;], and D, is a vector of
dummy variables.

15



Table 2: Misspecification tests, characteristic roots, and weak exogeneity
for the daily data

Univariate tests: AR3, AR6, AFf,
ARCH(2) 20.7 15.7 19.6
J.-B.(2) 64.4 176.3 152.3
skewness -0.11  0.03 0.28
excess kurtosis 1.63 3.09 3.00
0. x 100 0.038 0.037 0.218
R? 024 0.15 0.65
The trace test 504 39 4

(35) (20) )

The 3 largest roots of the process r = 2 1.0 091 0.18
Test of weak exogeneity for r = 2 :
X&.05(2) = 6.0 7.1 8.7 460.1

4.1 Model specification

Altogether sixteen dummies were needed to account for extraordinary
shocks influencing the federal funds rate and the tbill rates. They are as
follows:

D, = [D6, D42, D43, DI128, D149, DI159, D172, D187, D255,
D361, D380, DI463, D597, D706, DI713, D765],

where Dz isan ...0,0,1,0,0,... impulse dummy describing a permanent
shock at observation ¢t = z and DIz is an ...0,0,1,—1,0,0,... dummy
describing a transitory shock at observation t = x.

A VAR(2) produced the following misspecification tests: The mul-
tivariate LM test for first order residual autocorrelation, distributed as
x2(9), gave a test statistic of 6.0 and the null of no autocorrelation was
accepted with a p-value of 0.74. The multivariate normality test x*(6)
was strongly rejected based on a test statistic of 444.5. The univariate
test values are, therefore, additionally reported in Table 2, together with
the trace tests, the roots of the VAR process and weak exogeneity test
of the variables.
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It appears that the residuals exhibit significant ARCH effects and
that the strong rejection of normality is due to excess kurtosis but not to
skewness. Since the estimation results are generally moderately robust to
ARCH effects (Hansen and Rahbek, 1998) and excess kurtosis (Gonzalo,
1994) (but not skewness) we will disregard the non-normality problem
here.

The trace test is consistent with » = 2. This choice leaves a fairly
large root (0.91) in the model, indicating that the adjustment to the
second cointegration vector is likely to be quite slow. This is confirmed
by the awe coefficients in Table 3 and the graph of Gyx; in Figure 3. The
tests of weak exogeneity for the long-run parameters show that none of
the variables can be considered weakly exogenous and that the federal
funds rate is adjusting much more strongly than the treasury bill rates.

4.2 The daily results

In Table 3 we report an identified structure of the two long-run relations,
B’xt, and their corresponding short-run adjustment parameters, &. Sig-
nificant coefficients are in bold face. The test of the two overidentifying
restrictions (Johansen and Juselius, 1994), distributed as x?(2), produced
a test statistic of 2.12 and the restrictions can be accepted with a p-value
of 0.35. Additional restrictions in the form of a unit coefficient on F'f; in
B, gave a test statistic of 7.48 (x2(3), p-value 0.06) and similarly on R6,
in 3, a test statistic of 8.66 (x%(3), p-value 0.03). Imposing unit coeffi-
cients on both relations, i.e. the test whether the two spreads, F'f, —T'rg,
and R3; — R6;, span the cointegration space, was rejected based on a test
statistic of 14.58 (x?(4), p-value 0.01). Similar results were also obtained

in the monthly model, hence the coefficients are left unrestricted.

The first cointegration relation confirms the visual impression from
the graphs in Appendix B, Figure 10, panel (a), that the federal funds
rate has been closely tracking the target rate set by the Fed. The as;
coefficient shows that even on a daily basis the adjustment to the target
rate is very fast. But, more interestingly, the tbill rates hardly react at
all to deviations from the federal funds rate relation: &;; and d&s; are
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Table 3: An overidentified representation of the cointegrating space for
the daily data. (Significant values in boldface)

Cointegration vectors 3 Adjustment coefficients «
t-values in brackets t-values in brackets
Var. 61. 62. Eq CAY1. @2.
R3, 0.0 1.0 | AR3; 0.00 —0.05
0.2)  (-2.8)
R6, 0.0 —0.87| ARG, 0.01 0.04
(—21.2) (2.0) (2.4)
Ff, —0.92 0.0 | AFf, 0.90 -0.01
(—38.3) (24.8) (-0.1)
Trg; 1.0 0.0
Constant -0.46 -0.55
(—3.8) (—2.6)
Short-run adjustment coefficients
Fl AO
ARStfl ARthl AFftfl ATT’gtfl AT?"gt
AR3, 0.05 0.04 0.01 —0.02 | 0.13
(1.1) (0.9) (2.0) (-0.2) | (2.0)
ARG, 0.01 0.01 0.01 0.13 | 0.00
(0.3) (0.2) (2.9) 1.7) | (0.0)
AF f, 0.60 —-0.76 0.01 0.13 | 0.79
(2.6) (-3.2) (0.5) 0.3) | (2.1)

close to zero, though borderline significant for the six months treasury
bill rates?.

The second cointegration relation describes a 'modified’ yield gap
between the 3 and the 6 months tbill rates. Both are adjusting to this
relation (though not very strongly so), whereas the federal funds rate is
not. We interpret the results as some, but not very strong, evidence of
market adjustment between the treasury bill rates (as the expectations’
hypothesis would predict). 3

2The residual correlation between the federal funds rate and the two market rates
are 0.003 and 0.017, respectively, which strenghtens this result.

3The results from the monthly model based on an extended information set, sug-
gest that the present information set may not be sufficient to provide a complete

18



0 100 200 300 400 500 600 700 800

Figure 3: The graphs of the two identified cointegration relations of Table
3 for the daily data.

Although the estimates of a demonstrated modest reaction among
the market rates to the long-run relations 3'x;, the estimates of I'; and
Ag reported in Table 3 may still contain important short-run effects. The
3 months tbill rate seems to have been affected by the current change
in the target rate and the lagged change in the federal funds rate but
the effects are modest and only borderline significant. The 6 months
tbill rate is more significantly affected by the lagged federal funds rate.
Furthermore, the federal funds rate has reacted quite strongly to the
lagged change in the yield gap. This is confirmed in the monthly model.

Whether the tbill rates can be controlled or not using the federal
funds rate as an instrument depends on the target /instrument elements of
the long-run impact matrix. The estimated C' matrix is reported in Table
4 together with o\, B, = B1(a/,TB1)7 1 and Q. With r = 2 cointegration

description of the term structure.
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Table 4: The (C-matrix and the common trends a; and the associated
weights 3, = 3, («/, T'3.)~! for the daily data

The C' matrix on o Q
ER3 ER6 Erf
R3, 0.45 0.52 —0.01 0.87 0.52 | 0.0382
(2.5) (3.5) (1.3)
R6; 0.53 0.60 —-0.01 1.00 0.60 0.61 0.0372
(2.5) (3.5) (1.3)
Ff, -0.03 -0.04 0.00]| -0.02 -0.04| 0.003 0.017 0.218?
(2.5) (3.5) (1.3)

relations, there is just one common stochastic trend, o/, X¢_,&;, where

52 = [éR3aéR67éFf]~

The estimate of a; shows that the stochastic trend is determined
mainly by cumulated shocks to the two treasury bill rates. The estimate
of B | shows that the treasury bill rates are influenced by this trend in
the same proportion as the cointegration coefficients in Table 3. The
federal funds rate is not affected by the stochastic trend in the treasury
bill rates, but strongly affected by the weakly exogenous target rate as
shown in Table 3.

The estimates of the C' matrix confirm the above interpretation:
neither R3;, nor R6, would be controllable according to condition (8),
since they both appear to be log-run neutral with respect to F'f;. Thus
they cannot serve as candidates for intermediate targets, see Definition
1, even though they may cointegrate with inflation.

We have showed above that the condition for controllability of the
three months tbill rate was not satisfied based on the daily analysis and
the empirical analysis could stop there. Because of the strong prior belief
in the Fed’s ability to control inflation we have, nevertheless, continued
the analysis based on monthly data and give a fairly detailed interpreta-
tion of the empirical results.
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5 The monthly US model

In the second level of the analysis the domestic monetary transmission
mechanism describes how changes in the intermediate targets, trend-
adjusted money (m —m*) and the short-term interest rate (R;), dynami-
cally affect the domestic economy through the subsequent adjustment of
long-term interest rates (R;), the output gap (y—y*), and finally inflation
rate (Ap). The following simple diagram serves as an illustration:

Central bank (-) (+) (+) (-) (-)
— m-m*S R, — R — y—y* — Ap

(13)

All four variables from the daily analysis are available on a monthly basis

interventions :

starting from August 1985. We therefore keep the previous variables in
the model and extend it with four new variables, m — p, real money
stock in logs (M3), y real GDP* in logs, B10 the 10 years bond rate, and
the final target variable, Ap monthly CPI inflation rate (Aln CPI). We
apply the VAR model (1) to the following eight variables

z; = [m —p,y, Ap, R3, R6, B10, F f, Trg];,

where R3, R6, F'f, and Trg are monthly averages of daily observations.
The nominal interest rates have been transformed to monthly rates and
divided by 100 to make them comparable with monthly inflation. The
sample is from 1985:8 to 1999:2, consisting of 163 monthly observations.
Graphs of the monthly data are given in Appendix B, Figures 9 and 10.

5.1 Model specification

The target rate in Appendix B, Figure 10 looks more like a stochastic
process after aggregation. Because a model for the target rate might
contain information on how the Fed has set its target as a response to

4The monthly GDP values have been interpolated from quarterly data using the
procedure interpolate.scr in RATS, Estima, assuming a random walk + drift model.
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changing market conditions, i.e. on an implicit policy rule, it has been
included as a system variable in the VAR model. °

Three dummies were needed to account for the following interven-
tions:
D; = [D86.03, D86.12, D87.11],

where Dzx, yy describes a permanent impulse dummy to the system at
time 19xx.yy.

The results in Table 5 are based on a VAR(2) model. The mul-
tivariate LM test for first order residual autocorrelation, distributed as
x2(64), gave a test statistic of 81.0 and was accepted with a p—value of
0.07. The multivariate normality test x?(16) was rejected based on a test
statistic of 87.7. Table 5 report additionally univariate misspecification
tests for residual ARCH effects and normality, as well as trace tests, the
roots of the VAR process and weak exogeneity tests. The trace test sug-
gests four cointegrating relations and, hence, four common trends. With
the choice of r = 4 the modulus of the largest stationary root is 0.91 in
the model.

It appears that the 6 months thill rate and the 10 years bond rate
individually can be assumed weakly exogenous for the long-run parame-
ters 3, whereas the 3 months tbill rate is a borderline case. The test of
joint exogeneity of the first two gave a test statistic of 9.0 > 3 45(8) and
a p-value of 0.34, whereas the test that all three are jointly exogenous
was strongly rejected based on a test statistic of 53.0 > x3245(12) and a
p-value of 0.00.

5.2 The monthly results

According to Definition 1 a necessary condition for controllability of a
final target through the intermediate target is cointegration between an
intermediate target and the final target. More generally, cointegration

5As a sensitivity check the whole analysis was done with the target rate as an
exogenous variable. Since the main conclusions remained unaltered, we report only
the results of the full system analysis.
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Table 5: Misspecification tests, characteristic roots, and weak exogeneity
for the monthly data

Univ. tests: Amt Ayt A2pt ARBt ARGt ABlOt AFft ATTgt

ARCH(2) 1.6 0.2 0.1 15.3 1.8 0.1 2.1 13.7
J.-B.(2) 06 4.8 6.9 3.6 0.0 0.8 1.0 30.0
0. x 100 0.26 0.15 0.13 0.01 0.01 0.02 0.01 0.01
R? 0.75 0.66 0.70 0.49 042 0.37 0.67 0.52
Trace test: 335 234 156 98 52 24 11 3
(182) (146)  (115) (87) (63)  (42) (25) (12)
The roots: 1.0 1.0 1.0 1.0 0.91 0.80 0.80 0.43
Test of weak exogeneity for r = 4 :
X2(4) =95 255 276 402 86 27 4.0 309 231

properties between instruments, intermediate and final targets contain
important information on the monetary transmission mechanism illus-
trated in Table 1. Therefore, we first test cointegration between inflation
rate and each of the interest rates and then between the interest rates
relative to each other.

All hypotheses ‘H; — Hi5 in Table 6 are of the form 8 = {H¢, 1},
i.e. they test restrictions on a single vector and leave the other vectors
unrestricted (Johansen and Juselius, 1992). Except for His, H¢ tests
whether two variables are cointegrated (1, a), where a is freely estimated.

If there exists cointegration between pairs of variables, this procedure
should find it.

The hypotheses H; — Hs are tests of cointegration between the
inflation rate and each of the interest rates. There is weak evidence that
inflation rate is cointegrated (1, -0.4) with the federal funds rate (or the
target rate). Among the remaining hypotheses Hg — His, cointegration is
only found in Hj5 which describes the spread between the federal funds
rate and the target rate. Stationarity is accepted with a p-value of 0.98.
The estimated coefficient between the 3 and 6 months tbill rates in Hg is
close to unity, but the spread is nevertheless found to be nonstationary.
See also the graph in panel (c) of Figure 4.
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Figure 4: The graphs of the spread between (a) the federal funds rate
and the 3 months tbill rate, (b) the federal funds rate and the 6 months
tbill rate, (c) the 6 months tbill rate and the 3 months tbill rate, and (d)
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the 10 years bond rate and the 6 months thill rate.
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Table 6: Testing pairwise cointegration properties. Monthly data
Ap R3 R6 B0 Ff Trg x*(v) pwval

m-p y
H, 0 0 1 -043 0 0 0 0 11.4(4)  0.02
H, 00 1 0 -0.45 0 0 0 11.5(4)  0.02
H; 00 1 0 0 -0.56 0 0 18.8(4)  0.00
H, 00 1 0 0 0 -0.37 0 89(4) 0.06
H; 00 1 0 0 0 0 -0.37 85(4) 0.07
Hg 00 0 1 -1.04 0 0 0 19.4(4)  0.00
H;, 0 0 0 1 0 -1.56 0 0 26.5(4)  0.00
Hyg 0 0 0 1 0 0 -0.81 0 20.2(4)  0.00
H, 0 0 0 1 0 0 0 -0.81 20.1(4)  0.00

Hig 0 0 0 0 1 -0.66 0 0 26.2(4)  0.00

Hy 0 0 0 0 1 0 -0.78 0 15.5(4)  0.00

Hiy 0 0 0 0 1 0 0 -0.79 15.8(4)  0.00

His 0 0 0 0 0 1 -0.53 23.9(4)  0.00

Hyy 0 0 0 0 0 1 0 -0.53 23.8(4)  0.00

His 00 0 0 0 0 1 -1 0.81(5)  0.98

Although stationarity of the interest rate spread is of particular
interest, it is not necessary to test this hypothesis since the less restrictive
hypothesis of cointegration (1,a) was already rejected in H; — Hys. In
Figure 4 the graphs of the spread between the federal funds rate and
each of the tbill rates are given in panel (a) and (b), between the 3 and
6 months tbill rates in panel (c) and in panel (d) between the 10 years
bond rate and the 6 month thill rate. Although the interest rates seem
to move together very closely, as illustrated by the graphs in Figure 9 in
Appendix B, the spread between them, nevertheless, does not seem to
be significantly mean reverting.

The policy rule in Theorem 6 defines the necessary intervention
to be a function of the discrepancy between the actual and the desired
target value and of the equilibrium errors in the economy, as measured
by the cointegration relations ('z;. Table 7 report an identified struc-

25



005 |-
ol NPV A A A
Y V‘“\j WV V= VV TNV -

1990 1995

025
ol b‘%vxvl\ AN g
o Vaas A

1990 1995

0011 p——
A- N A A

005 -

005 - [=—em3] [\w/\
ol AA Mf\ AN N A Aunv/\/\v/\ul\/\[\'\ A A A~ ;Afv\ AN
| —\/V‘-’ V£ V VWV V N V'VVV\,\]'V\IVJV\//\/_‘J\/

.005 ‘ ‘ ‘
1990 1995
001 [——em4
A/ N TN
.001j
L L L L | L L L L L L L
1990 1995

Figure 5: The graphs of the four identified cointegration relations in
Table 7 for the monthly data.

ture of the cointegrating vectors 3 and their corresponding short-run
adjustment parameters &. Significant coefficients are in bold face. The
8 overidentifying restrictions gave a test statistic of 5.75, which com-
pared to x2¢5(8) = 15.5 can be accepted with a p—value of 0.68. Graphs
of the four cointegrating relations are given in Figure 5. The stabil-
ity of the model parameters have been checked by the recursive test
procedures discussed in (Hansen and Johansen, 1999). The recursively
calculated 95% confidence sets around Bt contained (p, and Bp for all
t =T, =1991:6,...,T =1999:2. The recursively calculated coefficients
of 3;; and «;; showed remarkable constancy.

The first cointegration relation corresponds to His in Table 6. The
adjustment coefficients, ay,, show that both the target rate and the Fed
rate are adjusting to the spread between the federal funds rate and the
target rate, but the latter more strongly so. Note also that inflation
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Table 7: A fully identified representation of the cointegrating relations
for the monthly model.

Cointegration vectors 3

t-values in brackets

Var. . Bs. [3s. [

my 0.0 0.0 0.004 0.002
(1.7) (2.0)

Yt 0.0 0.0 —-0.042 -0.021
(—4.4) (—4.9)

Ap, 0.0 0.0 1.0 0.0

R3, 0.0 1.0 0.0 1.44
(5.0)

R6, 0.0 —-1.14 0.0 —-2.64
(—89.6) (—8.8)

B10, 0.0 -0.15 —-043 0.0

(—9.7) (—3.1)
Ff, 1.0 0.0 0.0 0.0
Trg, -1.0 0.0 0.0 1.0

Trend 0.0 0.0 0.000 0.000
Adjustment coefficients «

t-values in brackets

Eq &1 CAYQ d3 CAV4

Amy —-0.80 —-17.5 0.23 4.27
(-0.4) (-4.5) (0.9) (4.1)

Ay, —0.96 —3.60 0.76 1.47
(-0.8) (-1.7) (5.0) (2.5)

A2p, 131 276 —0.96 —0.44
(1.3) (1.5) (=7.4) (—=0.9)

AR3;, —0.17 —-0.01 0.02 —0.06
(-1.7) (0.1) (1.8) (-1.1)

AR6; —0.20 0.22 0.02 -0.05
(—1.8) (1.1) (1.4) (—0.8)

AB10;, -0.01 -0.18 0.04 0.04
(—0.0) (—0.7) (1.9) (—0.5)

AF f, -0.48 0.47 0.02 —0.20
(-5.4) (2.9) (1.5) (—4.4)

ATrg, 0.29 0.19 0.01 —0.20
(2.6) (0.9) (1.0) (—3.6)
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is not significantly adjusting to this relation, nor is any of the market
determined interest rates.

The second relation is a homogeneous relation between the three
market rates, the 3 and 6 months tbill rates and the 10 years bond rate

R3 — R6 = 0.14(R6 — B10) + stat.comp.,

indicating that the nonstationarity of the tbill spread is related to the
nonstationarity of the spread between the bond rate and the 6 months
tbill rate. The adjustment coefficients, aw,, show that the federal funds
rate tend to go up and money stock contract when R3 is above the steady
state value. This would be consistent with the Fed causing a contraction
in money stock in order to increase the F'f rate as a response to a market
increase in the short tbill rate.

The third relation seems to contain elements of an I.S curve and a
Phillips curve relation

(y—trend) = 0.10(m—p—trend) —10.1(B10— Ap) +13.4Ap+ stat.comp.

Trend-adjusted real GDP is positively related to real trend-adjusted m3,
negatively to real long-term interest rate (the IS curve effect) and pos-
itively to the inflation rate (the Phillips curve effect). Both real GDP
and inflation rate are equilibrium error correcting to this relation.

The fourth relation might be interpreted as an implicit rule for the
target rate

trg = 1.2R6 +1.4(R6 — R3) 4+ 0.02(y — trend) — 0.002(m — p —trend) + ...

indicating that the target rate has followed the 6 months tbill rate but
on a 20% higher level, has been positively related to output gap, and
positively to the spread between the 6 and 3 months tbill rates. The
negative coefficient to trend-adjusted money stock is likely to describe
the monetary contraction effect associated with an increase in central
bank interest rates. The short-run adjustment coefficients, e, show
that both the target rate and the federal funds rate are significantly
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Table 8: The long-run impact matrix C' for the monthly data. (t-values
in brackets)

Em Ey EAp €R3 €R6 €B10 EFf  ETrg

my 3.9 —-13 —-11 -—-153.5 146.7 —-49.7 20.2 58.2
(32)  (-05) (-0.4) (2.0) (1.9) (-23)  (1.0) (2.1)

(i 0.8 2.2 1.7 —23.8 20,0 —-179 &84 19.6
(2.2) (2.8) (1.8) (-1.0) (1.1) (—2.8) (1.3) (2.4)

Ap, 0.0 0.2 0.1 —0.2 —1.2 0.5 0.9 0.5
(0.2) (4.0) (3.1) (-0.2) (-1.1) (1.5)  (2.9) (1.4)

R3; 0.04 0.14 0.14 —1.10 246 —0.22 0.11 0.90
(1.3) (2.3) (2.0) (-0.6) (1.3) (—0.4) (0.2) (1.4)

R6; 0.03 0.12 0.13 —1.07 232 —0.09 0.10 0.80
(1.2) (2.1) (1.9) (-0.6) (1.4) (—=0.2)  (0.2) (1.3)

B10, —0.00 0.01 0.04 —0.51 0.03 1.07 0.31 0.02
(0.0) (0.2) (1.0) (—0.5) (0.0) (3.6)  (1.1) (0.1)

Ff, 0.04 0.19 0.19 —1.22 2.00 0.04 0.46 1.08
(1.1) (2.7) (2.3) (-0.6) (1.0) (0.1)  (0.8) (1.5)

Trg, 0.04 0.19 0.19 —1.18 1.94 0.05 0.47 1.08
(1.1) (2.8) (2.4) (-0.6) (1.0) (0.1)  (0.9) (1.5)

Note: The large coefficients to interest rates in the first two rows are due to the data

transformation described at the beginning of Section 6.

adjusting to this relation. In the short run both real income and real
money stock react positively.

The short-run adjustment effects in Iy (not reported here) were
altogether small and mostly insignificant. The inflation rate was signif-
icantly adjusting to the lagged change of real money stock (but nega-
tively!), of 6 months tbill rate (negatively), and of the long-term bond
rate (positively). Lagged changes of output gap had positive effects on
essentially all the interest rates. Lagged changes of the federal funds rate
and the target rate had no significant effects on any of the variables.

Whether inflation is controllable or not is crucially dependent on
the long-run impact matrix, C'. Table 8 reports the estimated C. The
condition that inflation can be controlled by the Fed (using the federal
funds rate) is that c3; # 0 (or, because of the strong cointegration be-
tween F't and T'rg, csg # 0) in the C' matrix. Both coefficients are positive
(against the prior belief of a negative impact on inflation in the long run),
but only the federal funds rate c3; is significant in Table 8.
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The above results suggest that shocks to the federal funds rate have
primarily had a cost-push effect on inflation. The two negative elements
in the inflation row, c34 and c35, corresponding to the tbill rates, are not
significantly different from zero. The most significant long-run impact on
inflation is from shocks to the output gap, possibly signifying a ’"demand-
pull” effect on inflation. Hence, the widely held belief that the Fed can
bring US CPI inflation down by increasing the federal funds rate does
not obtain empirical support.

5.3 Simulating the new process

As an example of the effect of rule (13) on the variables in the economy, we
have used the estimated parameters and residuals from the VAR model
of this section to generate the process z}“* based on (12):

wpfy =2+ &P — ) + T1AZT + ®Dypy + Ep41.
Without interventions the process x; would be generated by:

Tyl = Xy + &(B’xt — /l) -+ flet —+ (ADDH_l -+ ét_|_1.

By subtracting x;41 from ¢} we find an expression for 7}’ in terms of

Tigt, Ty, Axy, 28" and Azé'" given by:

2t = g0 + (I, + aF) (27 — ) + T1 AT — ),
which together with (13)

B = 2 — a(YCa) Wape — b+ V(CF — 1)BEH) (B — )
YO (e — i)

can be used to derive the new process. The intervention, given by the
difference a'(z§"" — x7“"), is graphed in Figure 6 together with the Fed-
eral Funds rate. The additional interventions needed to make inflation
stationary are very small indeed. The derived interventions and the ob-
served VAR residuals are negatively correlated suggesting that the former
comprise a small negative correction of the actual 'shocks’ to the federal
funds rate.
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Figure 6: Graphs of the federal funds rate (dotted line) and the derived
interventions, Fff'" — F f* (solid line).

Because the long-run impact of permanent shocks to the federal
funds rate was significant (though positive), inflation is controllable. By
applying the control rule (13), inflation would have become stationary
around a target mean of 2% as illustrated in Figure 7. However, the
difference between the 'mew controlled’ inflation rate and the observed
inflation is not very large in this period.

6 Conclusions

Based on the cointegrated VAR model this paper has derived a simple
policy control rule related to the discrepancy between the actual and
desired value of the target variable, and to the equilibrium errors in the
economy as described by the cointegrating relations. The results are
given for the case when the number of targets are the same as the num-
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Figure 7: Annual inflation (solid line) and the new annual inflation (dot-
ted line), using the control rule (13) at all time points.
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ber of instruments and when the objective is to change a given process
to a stationary process with a mean given by the desired target value.
When the control rule is applied at all time points the dynamics of the
target variable change as a result of intervening in the market, but the
parameters of the other equations of the model do not change. The new
process is still generated by a VAR model in which the target variable is
now stationary around the target value. This result holds under control-
lability, expressed as a condition on the elements of the long-run impact
matrix.

The theoretical results were applied to US monetary data. In the
period examined the most important instrument used by the Federal
Reserve Bank was open market operations with the purpose of changing
the federal funds rate to make it follow the Fed’s target rate. Assuming
that this first control operation works well (as it obviously does), standard
theory assumes that an intervention to the federal funds rate first changes
the short-term market rates, then the long-term market rates and, finally,
via the transmission mechanism of the economy, the final target (the
goal) variable in the desired direction. The effectiveness of monetary
policy is thus dependent on there being an exploitable relationship from
the intermediate target via the macroeconomic transmission mechanism
to the final target, the inflation rate.

The empirical assessment was done in two steps: In the first step
the controllability of an intermediate target (the 3 months tbill rate)
by the Fed was examined based on daily data. In the second step the
transmission mechanism from the federal funds rate to short-term market
rates and from the latter to the macroeconomy and the inflation rate was
estimated based on monthly data. In both steps the claim that inflation
can be controlled by the Federal Reserve Bank increasing the federal
funds rate did not receive empirical support using the definitions and
modelling framework discussed here.

Three important conditions needed for short-term interest rate con-
trol to work as desired did not receive empirical support in the data:

i. The Fisher parity, which assumes that expected inflation is deter-
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mining nominal interest rates and that real interest rate is constant
or stationary.

ii. The expectations hypothesis of interest rates, which assumes that
the spread between interest rates of different maturities should be
stationary and consequently that one common trend is driving the
interest rates.

iii. The link between interest rates of different maturity, that is as-
sumed to run from the short rates set by the central bank to the
long-term market rates.

None of the nominal interest rates (the federal funds rate, the 3
and 6 months treasury bill rates, and the 10 years government bond
rate) appeared cointegrated with CPI inflation rate (which under weak
assumptions of rational agents should be cointegrated with expected in-
flation). Consistent with this (Juselius, 1999) we found that the spreads
were not pair-wise stationary, indicating more than one common trend in
the term structure of this period. Nevertheless, homogeneity between the
market rates was accepted demonstrating the close links between nom-
inal market rates. Finally, the link was from the long-term bond rate
to the shorter end of the term structure, as defined by the weak exo-
geneity tests and the estimated adjustment dynamics, and not the other
way around. This is consistent with the results in Juselius and MacDon-
ald (2000a, 2000b) where domestic and foreign transmission effects on
inflation, interest rates, and real exchange rates were investigated.

Several other empirical studies based on European data have sim-
ilarly found monetary effects on inflation to be negligible in the last
decades of increased globalization and capital liberalization (Juselius,
1998). Also, the role of inflationary expectations and their effect on for-
ward (wage) contracts, and of excess aggregate demand for demand-pull
inflation seem to have become less significant (Juselius, 2000). Therefore,
central banks seem to primarily have caused cost-push inflation when in-
creasing interest rates to curb inflationary expectations and to decrease
demand-pull effects on inflation.
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A Appendix: Linear control rules

The purpose of this Appendix is to present a more general formulation
of the simple linear control rule discussed in the main bulk of the paper.
Applications of control theory in economics have been extensively treated
for stationary data, see for example Preston and Pagan (1982), but not
in the context of cointegrated VAR models. Therefore, the results here
are almost exclusively derived for the latter models.

The general objective is to change some target variables so that they
become stationary with the mean given by the desired target values. The
results are derived for the case when the number of targets is the same
as the number of instruments. By applying the control rule at all points
of time the dynamics of the process change and we need to derive the
properties of the process resulting from the new model. The main result
is given in Section A.1, Theorem 5, for the control of a nonstationary
process with one lag and no trend, and extended in Section A.2 to a
process with several lags and a trend. Finally, in Section A.3 we give
the results for how to change the mean of a stationary target variable to
become the desired target value.

A.1 A general linear control rule

We assume here that the simple VAR(1) model (2) describes the macroe-
conomy and define a general linear control rule from a p X m matrix k,
and an m vector kg by

" =z + a(k'Ty — Ko).

When applying the rule at all time points we create a new model which
generates the new process z7“". Based on x}*” the central bank chooses
an intervention given by the control rule

" = (I, + ax’)z}™ — aro. (16)
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The market on the other hand generates the next value of the new process
based on model (2)

Y = (I, + af)x]™ — ap+ 4. (17)

We then prove

Theorem 5 If x; is given by the model
Az, =a(Bz 1 —p) +&
and we apply the control rule
o' = 2, + a(k'z; — ko), (18)

at all time points, then the new process x°" is given by a VAR(1) model.

The new process is an 1(1) process with (r+m)—dimensional coin-
tegrating space sp(3, k) and adjustment space sp(a, a), if and only if

ew(h+ﬂa (L+ﬂ®ﬂ%aﬂ<l‘ (19)

Ka Ly, + K, +af
In this case
|k'Cal # 0 (20)

and (B, k) 'z} is stationary with mean (1, ky) and a long-run impact
matriz given by

C"" = C — Ca(k'Ca) 'K'C. (21)
If K'a =0, then K'x}" is VAR(1) with coefficient matriz I,,+r'a. Hence,
it 1s white noise around ko if and only if

Im + K'a=0. (22)

Thus, by adding a(k'z; — ko) to the process at all time points we
remove m unit roots, if condition (19) is satisfied. This condition rules
out explosive roots, not only of the new combinations x’'z}“* but also
for §'z}". It is therefore needed for the new process (3, k) z}" to be
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stationary. In particular, if we choose x'a = 0, the results simplify con-
siderably, and the process 'z} becomes autoregressive and under (22)
even white noise. If K'a = 0, the stationary roots of the original process
are also roots of the new process.

The important necessary condition for achieving stationarity of the
variable 'z, is given by |x'Ca| # 0, see (20). Thus, in the example
in Section 2 we can make the nonstationary inflation rate m; stationary

using the interest rate R; as an instrument provided the relevant element
of the C' matrix is nonzero:

Cﬂ',R 7é 0.

Proof. Substituting (16) into (17) we derive the equation for the new
process

20 = (I, + o) (I, + ar)a{™" — aro) — api + ey
or

! »-new
Kz — Ko

! pnew
A = (a, (Ip+aﬁ’)d)< i —u )+ (23)

which define a VAR(1) model for z}¢". Condition (3) for the process to
be a cointegrated (1) process is given by (19). If (19) is satisfied then

'( fa (I, +fa)fa

i I= 1 ' N1l — |3 /
T Tl )| <l - walga) gal = gallca

is nonzero, which proves (20). If condition (19) holds there are m + r
cointegrating vectors (3, k) and the adjustment coefficients have changed
to
a" = (a, (I, + af)a).
Hence,
sp(a”) = sp(a, a).
If k' = 0, condition (19) simplifies to

(LB I+ Ba)fa
1
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which is equivalent to

leig(I, + B'a)| < 1 and |eig(I,, + k'a)| < 1.

new .

Multiplying (23) by &', for which '« = 0, we find an equation for &'}

! new __  I=(,.] new !
K Az = Kla(k'2)" — ko) + K'erya,

which shows that &'z is a VAR(1) process. If in addition x'a = —1I,,,

it is white noise around its mean.

To derive the new matrix C™% we first calculate

( Ga  B(I,+af)a )1 _ ( Ay A )

K o Iil(Ip + aﬁ')d A21 A22
where
Ap = (Ba)™ + (Ba) " B(I, + af)a(k'Ca) Ka (Ba)
Ay = —(K'Ca) 'Wa(fa)™

Ay = —(Ba) ' B(I, + af)a(x'Ca)~!
AQQ = (Ii/CC_l)il

and then find

-1

sa Srami) s

cmer = I, — (a, (I, + af)a) ( Ka K (I, +af)a

which reduces to the expression given in (21). H

A.2 A model with several lags and a linear trend

Next we apply the main result in Theorem 5 to a model with more lags
and a linear trend. We allow the control rule to depend on deviations
from trend of current and lagged observations:

k

2y =@+ d(z Ki(Te—iv1 — Yt — i+ 1)) — ko).
=1
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It is convenient to introduce the stacked process. To keep notation simple
we assume here that kK = 3 and define

Ty — €t 7
Ty = Ti—1 — f)/(t - 1) 7<§t = 0 ) /]’ = 0 ) (24>
xo —y(t —2) 0 0

and write (1) as an error correction model in companion form

A%, = a(f'T1 — i) + &, (25)
where
a I'1 TI's o
a=1|10 1, 0 ,ap = —Tap |, (26)
0 0 I, —Ta,
B ﬁ [p 0 B ﬁL
0= 0 —I, L |,B.=1 BL |- (27)
0 0 —1I, on
We find

&\ fL = o (I, —T1 =Ty = T,

which for an I(1) process has full rank, (Johansen 1996, Theorem 4.2).
Finally, we find the long-run impact matrix

I, I,
C=p.@&p)'a, =1 |C| -1} |, (28)
I, —I
where
C = ﬁL(a’LFﬁL)_lai. (29)

We now define the extended instrument, target and control matrices

a b K1
a= 0 ,b: 0 ,:‘%: %) ;
0 0 K3

and formulate the general result for model (1).
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Theorem 6 If (i) x; is a VAR(k) process given by (1) and (ii) we apply
the recursively defined control rule

2y =y + aw (27 —yt) +a Z Ko (27 = y(t = 4)) = ko), (30)

at all time points, and (iii) the new process is defined by the equations

k-1
Ty = (I, + af')xs 4 ap't — ap + ZF A:z:fjfl ;=) + Ea1,
i=1
then the stacked process (xp<,xi™], ... x")" is given by a VAR(1)

model.

The stacked process is an I(1) process with r + m cointegrating
relations if and only if

( IL+Ga (I ?’a)ﬁ'a a'a)"t . )‘ -1 (31)

In this case

|k'Cal # 0 (32)

and 'z} — p't — p and K (7Y —yt) — ko are stationary with mean zero.
Here (Ii = Zle ki). The stacked process has a long-run impact matriz

given by
/
Iy Iy
I, ) —I
| (C = Ca(k'Ca)™K'C) _ : (33)
Ip _P;e—l
If f'a = 0, or equivalently
a'k1 =0,k =k (I, —T1,...,—Tk_1), (34)

then kh v + 3% 21,%’.7:?’;“ is a VAR(1) with coefficient matriz I,,,+ ' a.
Furthermore, if
I, + Kkja =0, (35)

k=1 ) ct . . .
new cir
then Kixp® + Y .5 Kz, | is white noise around its mean.
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Proof. For notational simplicity we let £k = 3 and assume without loss
of generality that v = 0, and hence p = 0. The stacked process is given
by the equations

AZ, = a(F 3 — ) +&,.
We now apply Theorem 5 to the stacked process and the control rule &
at all time points and obtain from (16) and (17) the equations

T =g +a(@'a) H(R'EPY — ko) (36)
and
~new ~ AN\ ~ctr ~ ~ ~
Tiy = (Isp + BT — Gfi + €. (37)
From (36) we find for Z5" = (254", z5k™, 25,"")’, and similarly for ", the
equations
~ t — ~ — ~ —_ ~ —
57 = (I, + ar))TTY 4+ aryTye™ + axsTs™” — ako,
~ctr __ mnew
Loy = Ty (38)
~ctr __ snew
L3y = T3y

and from (37) we get

#ey = (I, + o + T)F — (D) - Ta)ag — Tod§y — ap+ ey,

~new __ sctr
Lot+1 = L1t

~new __ sctr
L3401 = Log -
(39)
We find that
~ctr __ ~new __ xctr
Lot+1 = Lot+1 = L1y
and
~ctr __ ~new __ ~ctr _ ~clr
L3t41 = L3441 = Lo = L1
ctr __ s.ctr new __ mnew
so that for z7"" = z{}" and x}" = 27", we get
ctr new
Ly Ly
~ctr ctr ~new ctr
Ly L1 | Tt Ly—q
ctr ctr
Li—2 Li g

43



Substituting (36) into (37) we see that z}{}{ satisfies the VAR(1)
model
Fiey = AT — (Isp + af")a(@'a) " ko — @ft + &y, (40)

where A is given by

B(I, +ax)) Barky—T1+Ty Baky—Ts
A= I, + ar} arsy aKs
0 I, 0

with B = I, + o' + I';. The first equation in (40) defines z}{} in terms
of z7'* and the lagged "controlled” values that were valid in previous
periods. The next set of equations defines the controlled values based
on the intervention rule (38). Note that Z}** is not a VAR process in
companion form because of the second set of equations. Hence the first

component, 7", need not be a VAR process.

From Theorem 5 we find, under assumption (31), that the processes

2 mnew new/ new/ ctr/ ctr/ ctr! \/
BEpet = (ape’ 8, o — xf, 2" — 2f)

clyanew .0 .new ! j.ctr ! .ctr
KT = RyZy " + Koy + K3y
are stationary around fi and kg respectively. This shows that g'z}¢" — pu,
P — ¢ and z§", — x¢7, are stationary with mean zero. From
!/ _new ! _.ctr /! _ctr __ 1 _new / new ctr / new ctr
Ry Y+ Rom + Ry = Kl — Ry (27 — 2iT) — Ry(z) Y — 2y)
it follows that x'x}“" — Ky is also stationary with mean zero.
Finally we notice that
!/
i I, I, a
~I N~ / 0
KCa= (ky,kyky) | I, |C| =T 0 | =k'Ca,
/

which proves (32), and shows that (33) is a consequence of (21). The
condition &'k = 0, becomes

a'ky =0, k1 + ko = Thky + k3 = 0.
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A.3 Controlling a stationary variable

We finally give a result on the control of a stationary variable.

Theorem 7 If x; is given by the model
Ary =a(fxy 1 —p) +e&

and we apply the control rule

at all time points, then the new process x}* is given by a VAR(1) model
which is I(1) with cointegrating space sp(f3), and adjustment space sp(a+

(af' + I,)a¢’), if and only if
leig(I. + B'a)(I, + f'ag’)| < 1. (41)
In this case ¢'(B'x}" — p) — Kg is stationary with mean

~(Ir + ¢/ (I + (B'a) ") B'a) " ko (42)

If b'x; is stationary, b* is the desired target value, and b'a = 0, then
the control rule

" =z +abr, — b — 07 b —Va(Fa) ),
makes b'x; stationary around b*, provided
©= Va(fa) (Ba+I)(Fa)fa=—-VA(z)"a|l.— (43)

has full rank, where A(z) is the characteristic polynomial of the process.

Condition (43) is roughly the same as the condition |V'Cal # 0, in
the sense that they both relate to the leading term in the expansion of

A(2)71, since if |0/Cal # 0, then

VCa = lilri(l — 2)bA(2) a.
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Proof. We find as before the equations
Azty = (a+ (I, + af)ag") (F'zi — p) — (I, + o )ake + e141. (44)
The condition for the process to be I(1) is
leig(Ir + 5'(a + (I, + af')ag'))| <1,

which is equivalent to (41). Multiplying (44) by 8’ we find, since E (' Ax}") =
0, that

0=p'(a+ (I, +ab)ag)EB'z — p) — (I + Fa)fary.  (45)

The coefficient matrix to E(F'zp") is full rank by assumption (41).
Hence, with ¢ = (I, + (f'a))F'a we find

B2 — p) = (I + 6'0) oo = S (1 + 90) o,
which shows (42).

If 'z, is stationary, then b = 3¢. We can choose ¢ = (o/3)1a’b
and, using (42), it follows that

EMzi) = E(¢Fap") = ¢'u+O(I, + ©) kg = b,
which has the solution
ko = (I + ©7)(b" — o).

Hence, /x}°" has mean b*, when © has full rank.

Condition (43) concerns the matrix © which we simplify using the
relation Va(B'a)'fa=ba=0

0 =va(fa)(fa+1)(fa) " fa
=ba+Va(fa)?fa="Va(fa)?Fa.

We finally find the characteristic polynomial and its inverse

A(z) = (1 - 2)I, - a2,

A(z) ™ = Ci +a(Ba)t Z (I + fla)Be, 2 # 1,
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and for b = B¢, we have
VA(z) alm = Va(Fa) Y (I + fa) faz'.ey = —Va(Fa) *Fa
1=0

47



B Appendix: The data.
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Figure 8: Daily observations of the federal target rate and the federal
funds rate (panel a), the 3 months treasury bill rate and the federal
target rate (panel b), and the 6 months treasury bill rate and the federal
target rate (panel ¢) over the period 1996.01.02 to 1999.03.26. The plots
are mean adjusted.
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Figure 9: The graphs of monthly observations of the deviation of real
GDP from a linear trend (panel a), deviations of real M3 from a linear
trend (panel b), and the yearly CPI inflation rates (panel c).
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Figure 10: The graphs of monthly observations of the federal reserve rate
and the federal target rate (panel a), the 3 months treasury bill rate and
the target rate (panel b), and finally the 6 months treasury bill rate and
the 10 years government bond rate (panel c).
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