
 

 
 
 
 
  
 

EUI Working Papers 
MWP 2007/34 

Specification tests for the distribution of errors in 
nonparametric regression: a martingale approach 
 

Juan Mora        Alicia Pérez-Alonso  



 

 



 

EUROPEAN UNIVERSITY INSTITUTE

MAX WEBER PROGRAMME
 
 

Specification tests for the distribution of errors in nonparametric regression: 
a martingale approach 

 
 

JUAN MORA     ALICIA PEREZ-ALONSO 

EUI Working Paper MWP  No. 2007/34

 



 

 

 
This text may be downloaded for personal research purposes only. Any additional 

reproduction for other purposes, whether in hard copy or electronically, requires the consent 
of the author(s), editor(s). If cited or quoted, reference should be made to the full name of the 

author(s), editor(s), the title, the working paper or other series, the year, and the publisher. 
 

The author(s)/editor(s) should inform the Max Weber Programme of the EUI if the paper is to 
be published elsewhere, and should also assume responsibility for any consequent 

obligation(s). 
 

ISSN 1830-7728 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2007 Juan Mora      Alicia Pérez-Alonso

Printed in Italy  
European University Institute 

Badia Fiesolana 
I – 50014 San Domenico di Fiesole (FI) 

Italy 
 

http://www.eui.eu/ 
http://cadmus.eui.eu/ 

 



 

 
 
 
 
 
Abstract 
 
We discuss how to test whether the distribution of regression errors belongs to a 
parametric family of continuous distribution functions, making no parametric 
assumption about the conditional mean or the conditional variance in the regression 
model. We propose using test statistics that are based on a martingale transform of the 
estimated empirical process. We prove that the resulting test statistics are asymptotically 
distribution-free, and a set of Monte Carlo experiments shows that they work reasonably 
well in practice. 
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Speci�cation tests for the distribution of errors

in nonparametric regression:

a martingale approach

Juan Mora� and Alicia Pérez-Alonsoy

1. INTRODUCTION

Speci�cation tests for the distribution of an observable random variable have

a long tradition in Statistics. However, there are many situations in which the

random variable of interest for the researcher is a non-observable regression error.

For example, in Economics, the productivity of a �rm is de�ned as the error term

of a regression model whose dependent variable is �rm pro�ts; and, in Finance, the

return of an asset over a period is usually de�ned as the error term of a dynamic

regression model. In contexts such as these, knowing whether the distribution of
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the error term belongs to a speci�ed parametric family or not may be crucial to

achieve e¢ cient estimation, to determine certain characteristics of interest (such

as percentiles or number of modes) of the error term, or to design an e¢ cient

bootstrap procedure. This is the problem that we study in this paper.

Let us describe the speci�c framework that we consider. Let (X; Y ) be a bi-

variate continuous random vector such that E(Y 2) is �nite, and denote m(x) �

E(Y jX = x) and �2(x) �Var(Y jX = x): We can consider then the error term

" � fY � m(X)g=�(X); which is, by de�nition, a zero-mean unit-variance ran-

dom variable. The objective of this paper is to describe how to test a parametric

speci�cation of the cumulative distribution function (c.d.f.) of ", while making

no parametric assumptions about the conditional mean function m(�) or the con-

ditional variance function �2(�): Speci�cally, if F (�) denotes the c.d.f. of " and

F � fF (�; �); � 2 � � Rmg denotes a parametric family of zero-mean unit-

variance continuous c.d.f.�s, each of them known except for the parameter vector

�; we propose a testing procedure to face the hypotheses

H0 : 9 �0 2 � such that F"(�) = F (�; �0), vs.

H1 : F"(�) =2 F ;

assuming that independent and identically distributed observations f(Xi; Yi)gni=1,

with the same distribution as (X; Y ); are available. The testing procedure that

we propose here could also be used, with appropriate changes, if the family F

reduces to one known c.d.f. (i.e. when there is no unknown parameter �), or if

the error term that is to be analyzed is de�ned by removing only the conditional

mean (i.e. when we consider the error term Y �m(X)). The speci�c test statistics

that should be used in these more simple contexts are discussed below.
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The testing problem that we study in this paper can also be considered as

an extension of the classical goodness-of-�t problem. Suppose that a parametric

speci�cation for the c.d.f. of an observable continuous variable Y is rejected us-

ing a traditional nonparametric goodness-of-�t statistic, such as the Kolmogorov-

Smirnov one; one of the drawbacks of these statistics is that the rejection of the

null hypothesis gives no intuition about the cause of the rejection. In this situa-

tion, it would be of interest to examine if the only reason why the null hypothesis

has been rejected is because the parametric family fails to capture appropriately

the behaviour in mean of Y ; if we want to check whether this is the case, then we

would have to analyze if the parametric speci�cation is appropriate for Y �m(X):

If the null hypothesis were rejected again, we might be interested in going one step

further and testing whether the parametric family fails to capture appropriately

the behaviour in mean and variance of Y ; thus, we would have to analyze if the

parametric speci�cation is appropriate for fY �m(X)g=�(X), and this is precisely

the testing problem that we consider here.

The test statistics that we propose in this paper can be motivated by studying

the relationship between our problem and the classical goodness-of-�t problem.

If the error term " were observable and parameter �0 were known, our test would

be the classical goodness-of-�t test. In our context, the unobservable errors must

be replaced by residuals, which must be derived using nonparametric estimations

of m(�) and �2(�) since no parametric form for these functions is assumed, and

parameter �0 must be replaced by an appropriate estimator, say b�. Thus, any of
the traditional nonparametric goodness-of-�t statistics could be used as a statis-

tic for our test and computed using nonparametric residuals and the estimator b�.
However, it is well-known in the literature that the consequence of replacing errors
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by parametric residuals and parameters by estimators in goodness-of-�t tests is

that the resulting statistics are no longer asymptotically distribution-free (see e.g.

Durbin, 1973 or Loynes, 1980); furthermore, the asymptotic null distributions usu-

ally depend on unknown quantities and, hence, asymptotic critical values cannot

be tabulated. In this paper we prove that this is also the case when nonparamet-

ric residuals are used, and we discuss how this problem can be circumvented in

our testing problem. Speci�cally, by using the results derived in Akritas and Van

Keilegom (2001), we derive the asymptotic behaviour of goodness-of-�t statistics

based on nonparametric residuals and estimators; and then, following the method-

ology introduced in Khmaladze (1993), we derive the martingale-transformed test

statistics that are appropriate in our context.

The rest of the paper is organized as follows. In Section 2 we introduce the

empirical process on which our statistics are based and derive its asymptotic

properties. In Section 3 we describe the martingale transformation that leads to

asymptotically distribution-free test statistics. In Section 4 we report the results

of a set of Monte Carlo experiments that illustrate the performance of the statistics

with moderate sample sizes. Some concluding remarks are provided in Section 5.

All proofs are relegated to an Appendix.

2. STATISTICS BASED ON THE ESTIMATED EMPIRICAL

PROCESS

If we had observations of the error term f"igni=1 and parameter �0 were known,

we could use as a statistic for our test the asymptotic Kolmogorov-Smirnov sta-
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tistic Kn or the Cramér-von Mises statistic Cn; which are de�ned by

Kn � n1=2 sup
z2R

jFn(z)� F (z; �0)j ;

Cn �
nX
i=1

fFn("i)� F ("i; �0)g2;

where Fn(�) denotes the empirical c.d.f. based on f"igni=1. Both Kn and Cn are

functionals of the so-called empirical process Vn(�); de�ned for z 2 R by

Vn(z) � n�1=2
nX
i=1

fI("i � z)� F (z; �0)g;

where I(�) is the indicator function. Hence, the asymptotic properties of Kn and

Cn can be derived by studying the weak convergence of the empirical process

Vn(�): In our context, the test statistics must be constructed replacing errors

by residuals and the unknown parameter by an estimator. Since no parametric

assumption about the conditional mean m(�) or the conditional variance �2(�) is

made, the residuals fb"igni=1 must be constructed using nonparametric estimates of
these functions. Speci�cally, we consider Nadaraya-Watson estimators, i.e.

bm(x) =
nP
i=1

Wi(x; hn)Yi;

b�2(x) =
nP
i=1

Wi(x; hn)Y
2
i � bm(x)2;

where Wi(x; hn) � Kf(x � Xi)=hng=
Pn

j=1Kf(x � Xj)=hng, K(�) is a known

kernel function and fhng is a sequence of positive smoothing values. With these

estimates we construct the nonparametric residuals b"i � fYi � bm(Xi)g=b�(Xi):

On the other hand, the unknown parameter must be replaced by an appropriate

estimator b�; we discuss below the asymptotic properties that b� must satisfy. Using
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this estimator and the nonparametric residuals, we can de�ne now the statistics

bKn � n1=2 sup
z2R

��� bFn(z)� F (z;b�)��� ;
bCn �

nX
i=1

f bFn(b"i)� F (b"i;b�)g2;
where bFn(�) denotes the empirical c.d.f. based on fb"igni=1. Both bKn and bCn are
functionals of the process bVn(�); de�ned for z 2 R by

bVn(z) = n�1=2
nX
i=1

fI(b"i � z)� F (z;b�)g:
This process will be referred to as the �estimated empirical process�. First of all

we discuss the asymptotic relationship between the empirical process Vn(�) and

the estimated empirical process bVn(�), since this relationship will be crucial to

establishing the asymptotic behaviour of bKn and bCn: The following assumptions
will be required:

Assumption 1: The support of X, hereafter denoted SX ; is bounded, convex

and has a non-empty interior.

Assumption 2: The c.d.f. of X, denoted FX(�), admits a density function fX(�)

that is twice continuously di¤erentiable and strictly positive in SX :

Assumption 3: The conditional c.d.f. of Y j X = x, hereafter denoted F (�jx);

admits a density function f(�jx): Additionally, both F (yjx) and f(yjx) are

continuous in (x; y), the partial derivatives @
@y
f(yjx), @

@x
F (yjx), @2

@x2
F (yjx)

exist and are continuous in (x; y); and supx;y jyf(yjx)j <1; supx;y jy @
@x
F (yjx)j

<1; supx;y jy2 @@yf(yjx)j <1; supx;y jy2 @
2

@x2
F (yjx)j <1.

Assumption 4: The functions m(�) and �2(�) are twice continuously di¤eren-

tiable. Additionally, there exists C > 0 such that infx2SX �
2(x) � C.
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Assumption 5: The kernel function K(�) is a symmetric and twice continu-

ously di¤erentiable probability density function with compact support andR
uK(u)du = 0.

Assumption 6: The smoothing value hn satis�es that nh4n = o(1); nh5n= log h
�1
n =

O(1) and log h�1n =(nh3+2�n ) = o(1) for some � > 0.

Assumption 7: The c.d.f F (�; �) admits a density function f(�; �) which is pos-

itive and uniformly continuous in R. Additionally, f(�; �) is twice di¤eren-

tiable with respect to both arguments, F (�; �) has bounded derivative with

respect to the second argument and supz2R jzf(z; �)j <1 for every � 2 �.

Assumption 8: If H0 holds, then there exists a function  (�; �; �) such that n1=2(b��
�0) = n�1=2

Pn
i=1  (Xi; "i; �0) + op(1). Additionally, Ef (X; "; �0)g = 0,


 � Ef (X; "; �0) (X; "; �0)0g is �nite,  (�; �; �) is twice continuously di¤er-

entiable with respect to the second argument and supz2R j @
2

@z2
 (x; z; �)j <1.

Assumption 9: If H1 holds, then there exists �� 2 Rm such that n1=2(b� � ��) =

Op(1):

Assumptions 1-6, which are similar to those introduced in Akritas and Van

Keilegom (2001), guarantee that the nonparametric estimators of the conditional

mean and variance behave properly. Assumption 7 allows us to use mean-value

arguments to analyze the e¤ect of introducing the parametric estimator b�. As-
sumptions 8-9 ensure that the parametric estimator behaves properly both under

H0 and H1:

Our �rst proposition states an �oscillation-like� result between the empirical

process and the estimated empirical process in our context.
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Proposition 1: If H0 holds and assumptions 1-8 are satis�ed then

sup
z2R

��� bVn(z)� fVn(z) +A1n(z) +A2n(z)�A3n(z)g
��� = op(1);

where

A1n(z) � f(z; �0)n
�1=2Pn

i=1f('1(Xi; Yi) + �1ng;

A2n(z) � zf(z; �0)n
�1=2Pn

i=1f'2(Xi; Yi) + �2ng;

A3n(z) � F�(z; �0)
0n1=2(b� � �0);

and F�(z; �) � @
@�
F (z; �); '1(x; y) � ��(x)�1

R
fI(y � v) � F (vjx)gdv,

'2(x; y) � ��(x)�2
R
fv �m(x)gfI(y � v) � F (vjx)gdv, and, for j = 1; 2,

�jn � 1
2
h2nf

R
u2K(u)dugEf'jxx(X; Y )g; 'jxx(x; y) � @2

@x2
'j(x; y).

Note that processesA1n(�) andA2n(�) arise as a consequence of the nonparamet-

ric estimation of the conditional mean and variance, respectively, whereas A3n(�)

re�ects the e¤ect of estimating �0: The following theorem states the asymptotic

behaviour of bKn and bCn.
Theorem 1: Suppose that assumptions 1-7 hold. Then:

a) If H0 holds and assumption 8 is satis�ed then:

bKn
d! sup

t2R
jD(t)j and bCn d!

Z
fD(t)g2dt,

where D(�) is a zero-mean Gaussian process on R with covariance structure

CovfD(s); D(t)g = F (min(s; t); �0)� F (s; �0)F (t; �0) +H(s; t; �0);
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and

H(s; t; �0) � f(s; �0)[EfI(" � t)"g+ s
2
EfI(" � t)("2 � 1)g]

+f(t; �0)[EfI(" � s)"g+ t
2
EfI(" � s)("2 � 1)g]

+f(s; �0)f(t; �0)[1 +
s+t
2
E("3) + st

4
fE("4)� 1g]

�F�(s; �0)0EfI(" � t) (X; "; �0)g

�F�(t; �0)0EfI(" � s) (X; "; �0)g

�f(s; �0)F�(t; �0)0[Ef (X; "; �0)"g+ s
2
Ef (X; "; �0)("2 � 1)g]

�f(t; �0)F�(s; �0)0[Ef (X; "; �0)"g+ t
2
Ef (X; "; �0)("2 � 1)g]

+F�(s; �0)
0
F�(t; �0):

b) If H1 holds and assumption 9 is satis�ed then, 8 c 2 R,

P ( bKn > c)! 1 and P ( bCn > c)! 1:

Since the covariance structure of the limiting process depends on the underlying

distribution of the errors and the true parameter, it is not possible to obtain

asymptotic critical values valid for any situation. To overcome this problem, in the

next section we propose to consider test statistics that are based on a martingale

transform of the estimated empirical process, in the spirit of Khmaladze (1993),

Bai (2003) and Khmaladze and Koul (2004).

3. STATISTICS BASED ON A MARTINGALE-TRANSFORMED

PROCESS

As Proposition 1 states, three new processes appear in the relationship between

the estimated empirical process bVn(�) and the true empirical process Vn(�): These

three additional processes stem from the estimation of the conditional mean, the

conditional variance and the unknown parameter. If we follow the methodology
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described in Bai (2003), this relationship leads us to consider the martingale-

transformed process

Wn(z) � n1=2f bFn(z)� Z z

�1
q(u)0C(u)�1dn(u)f(u; �0)dug;

where

q(u) � (1; fu(u; �0)=f(u; �0); 1 + ufu(u; �0)=f(u; �0); f�(u; �0)0=f(u; �0))0;

C(u) �
R +1
u

q(�)q(�)0f(� ; �0)d� ;

dn(u) �
R +1
u

q(�)d bFn(�) = n�1
Pn

i=1 I(b"i � u)q(b"i);
and fu(u; �) � @

@u
f(u; �), f�(u; �) � @

@�
f(u; �). Since processWn(�) depends on the

unknown parameter �0, we cannot use it to construct test statistics; obviously, the

natural solution would be to replace again �0 by b�. Thus, we consider the estimated
martingale-transformed process cWn(�), de�ned in the same way as Wn(�); but

replacing �0 by b�:With this estimated process we can construct the Kolmogorov-
Smirnov and Cramér-von-Mises martingale-transformed statistics

Kn � sup
z2R

���cWn(z)
��� ;

Cn �
nX
i=1

cWn(b"i)2:
The asymptotic behaviour of these statistics can be derived studying the weak

convergence of cWn(�): Throughout, for �xed M0 > 0, let N(�0;M0) = f� 2

�; jj� � �0jj � M0n
�1=2g denote the neighborhood of �0. Analogously, for �xed

M1 > 0; let N(��;M1) denote the neighborhood of ��. The following additional

assumptions, which ensure that the martingale transformation can be performed

and behaves properly, are required.

Assumption 10: C(u) is a non-singular matrix for every u 2 [�1;+1).
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Assumption 11: If H0 holds, then sup
v2N(�0;M0)

+1R
�1

jjq�(u)j�=vjj2f(u; �0)du = Op(1);

where q�(�)j�=v denotes the derivative of q(�) with respect to � evaluated at

� = v:

Assumption 12: If H1 holds, then sup
v2N(��;M1)

+1R
�1

jjq�(u)j�=vjj2f(u; ��)du = Op(1):

Theorem 2: Suppose that assumptions 1-7 and 10 hold. Then, for every � 2

(0; 1), in the space D[0; 1� �],

a) If H0 holds and assumptions 8 and 11 are satis�ed then:

Kn�
d! sup
t2[0;1��]

jW(t)j and Cn�
d!
Z
[0;1��]

fW(t)g2dt;

where W(�) is a Brownian motion.

b) If H1 holds and assumptions 9 and 12 are satis�ed then, 8 c 2 R:

P
�
Kn� > c

�
! 1 and P

�
Cn� > c

�
! 1:

As Bai (2003) points out in page 540, Kn = (1� �)�1=2Kn�
d! supt2[0;1] jW(t)j,

because (1 � �)�1=2 supt2[0;1��] jW(t)j and supt2[0;1] jW(t)j have the same distri-

bution. Therefore, the same critical values can be used for Kn� and Kn after

appropriate rescaling. It follows from this theorem that a consistent asymptoti-

cally valid testing procedure with signi�cance level � is to reject H0 if Kn > k�, or

to reject H0 if Cn > c�, where k� and ca denote appropriate critical values derived

from the c.d.f.�s of supt2[0;1] jW(t)j and
R
[0;1]
fW(t)g2dt: Speci�cally, the critical

values for Kn with the most usual signi�cance levels are k0:10 = 1:96, k0:05 = 2:24,

k0:01 = 2:81 (see e.g. Shorack and Wellner, 1986, p.34), and the critical values

for Cn with the most usual signi�cance levels are c0:10 = 1:196, c0:05 = 1:656,

c0:01 = 2:787 (see e.g. Rothman and Woodroofe, 1972).
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The statistics Kn and Cn are designed to test whether the c.d.f. of the error

term " = fY �m(X)g=�(X) belongs to a parametrically speci�ed family of zero-

mean unit-variance continuous c.d.f.�s. If we were interested in testing whether

the c.d.f. of the error term Y �m(X) belongs to a parametrically speci�ed family

of zero-mean continuous c.d.f.�s, then the statistics that we would use are de�ned

in the same way as Kn and Cn, but considering q(u) � (1; fu(u; �0)=f(u; �0);

f�(u; �0)
0=f(u; �0))

0: If we were interested in testing whether the c.d.f. of the

error term " = fY � m(X)g=�(X) is a known zero-mean unit-variance c.d.f.

F0(�), then the statistics that we would use are supz2R jWn(z)j and
Pn

i=1Wn(b"i)2;
where Wn(�) is de�ned as above but now considering q(u) � (1; f0;u(u)=f0(u);

1+ uf0;u(u)=f0(u))
0, where f0(�) and f0;u(�) denote the �rst and second derivative

of F0(�): Finally, if we were interested in testing whether the c.d.f. of the error

term Y � m(X) is a known zero-mean c.d.f. F0(�); then the statistics that we

would use are again supz2R jWn(z)j and
Pn

i=1Wn(b"i)2; but nowWn(�) is de�ned

as above but considering q(u) � (1; f0;u(u)=f0(u))0.

4. SIMULATIONS

In order to check the behaviour of the statistics, we perform a set of Monte

Carlo experiments. In each experiment, independent and identically distributed

f(Xi; Yi)gni=1 are generated as follows: Xi has uniform distribution on [0; 1] and

Yi = 1 + Xi + "i, where Xi and "i are independent, and "i has a standardized

Student�s t distribution with 1=� degrees of freedom. The value of � varies from

one experiment to another; speci�cally, we consider � = 0; 1=12; 1=9, 1=7; 1=5

and 1=3 (when � = 0; the distribution of "i is generated from a standard normal

distribution). Using the generated data set f(Xi; Yi)gni=1 as observations, we test
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the null hypothesis that the distribution of the error term fY �m(X)g=�(X) is

standard normal. Observe that, according to the data generation mechanism, the

null hypothesis is true if and only if � = 0; thus the experiment with � = 0 allows

us to examine the empirical size of the test, and the experiments with � > 0 allow

us to examine the ability of the testing procedure to detect deviations from the

null hypothesis caused by thick tails.

The test is performed using the statistics described at the end of the previ-

ous section, i.e. the Kolmogorov-Smirnov type statistic supz2R jWn(z)j and the

Cramér-von Mises type statistic
Pn

i=1Wn(b"i)2; whereWn(�) is de�ned as above.

Note that in the speci�c test that we are considering in this set of experiments, the

function q(�) that appears in the de�nition ofWn(�) proves to be q(u) � (1; �u;

1 � u2)0: The computation of the statistics requires the use of Nadaraya-Watson

estimates of the conditional mean and variance functions. We have used the stan-

dard normal density function as a kernel function K(�), and various smoothing

values to analyze how the selection of the smoothing value in�uences the results;

speci�cally, we consider h(j) = C(j)b�Xn�1=5; for j = 1; :::; 4, where b�X is the

sample standard deviation of fXigni=1 and C(j) = j=2: The integrals within the

martingale-transformed process have been approximated numerically. We only

discuss the results for the Cramér-von Mises type statistic, since the results that

are obtained with the Kolmogorov-Smirnov type statistic are quite similar. In

Table 1, we report the proportion of rejections of the null hypothesis for n = 100

and n = 500 with various signi�cance levels; these results are based on 1000 repli-

cations. The results that we obtain show that the statistic works reasonably well

for these sample sizes, and its performance is not very sensitive to the choice of

the smoothing value.
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5. CONCLUDING REMARKS

In this paper we discuss how to test if the distribution of errors from a nonpara-

metric regression model belongs to a parametric family of continuous distribution

functions. We propose using test statistics that are based on a martingale trans-

form of the estimated empirical process. These test statistics are asymptotically

distribution-free, and our Monte Carlo results suggest that they work reasonably

well in practice.

The present research could be extended in several directions. First of all, it

would be interesting to extend our results to the case of symmetry tests. Under a

nonlinear regression model, conditional symmetry is equivalent to the symmetry

of the error term about zero. This is the null hypothesis we are interested in.

Symmetry and conditional symmetry play an important role in many situations.

The following examples may illustrate the relevance of constructing consistent

tests of symmetry and conditional symmetry. Conditional symmetry is part of

the stochastic restrictions on unobservable errors used in semiparametric mod-

elling (Powell, 1994). Adaptive estimation relies on the assumption of conditional

symmetry (Bickel, 1982; Newey, 1988). In macroeconomics, the symmetry of

innovations also plays an important role (Campbell and Henstchel, 1992). In Fi-

nance, knowing whether returns or risks exhibit symmetry may help in the choice

of an adequate risk measure for portfolio risk management (Gouriérox, Laurent

and Scaillet, 2000). Knowledge of the properties of the error term in a regres-

sion model has e¢ ciency implications for bootstrapping (Davidson and Flachaire,

2001).

In addition to this, it would be also interesting to extend the results we have

14



already obtained to dynamic models. The main point here is to extend Theorem

1 of Akritas and Van Keilegom (2001), which proposed a consistent estimator

of the distribution of the error term based on nonparametric regression residuals

for iid observations, to a context with dependent observations. This would allow

us to apply a martingale transform to the nonparametric-oscillation like results

derived.

APPENDIX: PROOFS

Proof of Proposition 1: Assume that H0 holds and let b� be an appropriate
estimator of �0. If we add and substract F (z; �0) to bVn(�), we obtain

bVn(z) = n�1=2
nX
i=1

[I(b"i � z)� F (z; �0)]� n1=2[F (z;b�)� F (z; �0)] (1)

= (I)� (II):

By Taylor expansion, the second term admits the approximation

(II) = F�(z; �0)
0n1=2(b� � �0) + F��(z; �)

0n1=2(b� � �0)
2=2; (2)

where F�� denotes the second partial derivative of F (�; �) with respect to

the second argument and � denotes a mean value between b� and �0. Apply
assumption 8 to show that the last term is Op(n�1=2).

From Theorem 1 in Akritas and Van Keilegom (2001), we obtain the fol-

lowing expansion of the empirical c.d.f. based on the estimated residuals

b"i:
bFn(z) = n�1

nX
i=1

I(b"i � z)

= n�1
nX
i=1

I("i � z) + n�1
nX
i=1

'(Xi; Yi; z) + �n(z) +Rn(z); (3)
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where '(x; y; z) = �f(z; �0)��1(x)
R
[I(y � v)� F (vjx; �0)](1 + z v�m(x)�(x)

)dv,

�n(z) =
1
2
h2nf

R
u2K(u)dugEf'xx(X; Y; z)g; 'xx(x; y; z) = @2

@x2
'(x; y; z) and

supz2R jRn(z)j = op(n
�1=2) + op(h

2
n) = op(n

�1=2): Note that

'(x; y; z) = f(z; �0)'1n(x; y) + zf(z; �0)'2n(x; y);

�n(z) = f(z; �0)�1n + zf(z; �0)�2n

where '1n(�; �), '2n(�; �), �1n and �2n are as de�ned above. The proposition

follows immediately by appealing to (2) and (3) in (1). �

Proof of Theorem 1: First we prove the theorem for bKn. Note that, under H0,bKn = supz2R

��� bDn(z)
���+ op(1), where we de�ne

bDn(z) � n�1=2
nX
i=1

fI(b"i � z)� F (z;b�)� �n(z)g; (4)

and �n(�) is de�ned above. To derive the asymptotic distribution of bKn, it

su¢ ces to prove that bDn(�) converges weakly to D(�), and then apply the

continuous mapping theorem. From Proposition 1 and (4), it follows that

bDn(�) has the same asymptotic behaviour as Dn(z) � n�1=2
Pn

i=1[I("i �

z) � F (z; �0) + '(Xi; Yi; z)] � F�(z; �0)
0n1=2(b� � �0), where the function

'(�; �; �) is de�ned above.

To analyze the process Dn(�), we follow a similar approach to that used in

the proof of Theorem 3.1 in Dette and Neumeyer (2003), though now an

additional term turns up due to the estimation of parameter �0. We can

rewrite '(�; �; �) as follows:

'(x; y; z) = �f(z;�0)
�(x)

(1� zm(x)
�(x)

)f
1R
y

(1� F (vjx))dv �
yR

�1
F (vjx)dvg
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� zf(z;�0)
�2(x)

f
1R
y

v(1� F (vjx))dv �
yR

�1
vF (vjx)dvg

= �f(z;�0)
�(x)

(1� zm(x)
�(x)

)(m(x)� y)� zf(z;�0)
2�2(x)

(�2(x) +m2(x)� y2):

For y = m(x) + �(x)", we have

'(x; y; z) = '(x;m(x) + �(x)"; z) = f(z; �0)("+
z

2
("2 � 1)): (5)

We also have for the bias part

�n(z) = �h2nf
Z
k(u)u2dug � ff(z; �0)

Z
1

�2(x)
[(m00�fX)(x)

+2(m0�f 0X)(x)� 2(�0m0fX)(x)]dx+ zf(z; �0)

Z
1

�2(x)
[2(�0�f 0X)(x)

+(�00�fX)(x)� (m0(x))2fX(x)� 3(�0(x))2fX(x)]dxg=2,

where we use the prime and the double prime to denote the �rst and second

order derivatives of the corresponding function, respectively. Observe that

the bias can be omitted if nh4n = o(1).

By assumption 8 and replacing (5) in Dn(z), we obtain

Dn(z) = n�1=2
nX
i=1

[I("i � z)� F (z; �0) + f(z; �0)("i +
z

2
("2i � 1))

�F�(z; �0)0 (Xi; "i; �0)] + op(1)

= eDn(z) + op(1);

where the last line de�nes the process eDn(�). Obviously, under our assump-

tions, E[eDn(z)] = 0. For s; t 2 R, straightforward calculation of the covari-

ances yields that CovfeDn(s); eDn(t)g = F (min(s; t); �0)� F (s; �0)F (t; �0) +

H(s; t; �0); where H(�; �; �) is de�ned in Theorem 1. Hence, the covariance

function of eDn(�) converges to that of D(�).

To prove weak convergence of process Dn(�), it su¢ ces to prove weak con-

vergence of eDn(�). Let `1(G) denote the space of all bounded functions from
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a set G to R equipped with the supremum norm kvkG = supg2G jv(g)j, and

de�ne G = f�z(�); z 2 Rg as the collection of functions of the form

�z(") = I(" � z) + f(z; �0)("+
z

2
("2 � 1))� F�(z; �0)

0 (X; "; �0): (6)

With this notation, observe that

eDn(z) = n�1=2
nX
i=1

(�("i)� E[�("i)])

is a G-indexed empirical process in `1(G). Proving weak convergence of

eDn(�) in `1(G) entails that the class G is Donsker. Following Theorem 2.6.8

of van der Vaart and Wellner (1996, p.142), we have to check that G is

pointwise separable, is a Vapnik- �Cervonenkis class of sets, or simply a VC-

class and has an envelope function �(�) with weak second moment1. Using

the remark in the proof of the aforementioned theorem, the latter condition

on the envelope can be promoted to the stronger condition that the envelope

has a �nite second moment.

Pointwise separability of G follows from p. 116 in van der Vaart and Wellner

(1996). More precisely, de�ne the class G1 = f�z(�); z 2 Qg, which is a

countable dense subset of G (dense in terms of pointwise convergence). For

every sequence zm 2 Q with zm & z as m �! 1, which means that zm
1Consider an arbitrary collection Xn = fx1; :::; xng of n points in a set X and a collection

C of subsets of X . We say that C picks out a certain subset A of Xn if A = C \Xn for some

C 2 C. Additionally, we say that C shatters Xn if all of the 2n subsets of Xn are picked out by

the sets in C. The VC-index V (C) of the class C is the smallest n for which no set Xn � X is

shattered by C. We say that C is a VC-class if V (C) is �nite. Finally, a collection G is a VC-class

of functions if the collection of all subgraphs f(x; t); g(x) < tg, where g ranges over G, forms a

VC-class of sets in X �R. See van der Vaart and Wellner (1996, chapter 2.6) for further details.
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decreasingly approaches z as m �! 1, and �z(�) 2 G, we consider the

sequence �zm(�) 2 G1. First, for each " 2 R, the sequence �zm(�) ful�ls

that �zm(") �! �z(") pointwise as m �! 1, since �z(�) is right continuous

for every " 2 R. Second, �zm(�) �! �z(�) in L2(P )-norm, where P is the

probability measure corresponding to the distribution of ",

k�zm(")� �z(")k2P;2 �
R
j�zm(")� �z(")j2f(v; �0)dv

� 3[F (zm; �0)� F (z; �0) + (f(zm; �0)� f(z; �0))
2E("2)

+(zmf(zm; �0)� zf(z; �0))
2E("2 � 1)2=4]

+(F�(zm; �0)� F�(z; �0))
0
(F�(zm; �0)� F�(z; �0))

�2(F�(zm; �0)� F�(z; �0))
0Ef(I(" � zm)� I(" � z)) (X; "; �0)g

�2(f(zm; �0)� f(z; �0))(F�(zm; �0)� F�(z; �0))
0Ef (X; "; �0)"g

�2(zmf(zm; �0)� zf(z; �0))(F�(zm; �0)� F�(z; �0))
0Ef (X; "; �0)("2 � 1)g

�! 0 as m �!1:

For z 2 R, we may rewrite (6) as �z(") = g1(") + g2("), where g1(") = I(" �

z) and g2(") = f(z; �0)("+
z
2
("2�1))�F�(z; �0)0 (X; "; �0). Let us now de�ne

the class of all indicator functions of the form C1 = f" 7�! I(" � d); d 2 Rg

such that g1(�) 2 C1. Consider any two point sets f"1; "2g � R and assume,

without loss of generality, that "1 < "2. It is easy to verify that C1 can pick

out the null set and the sets f"1g and f"1; "2g but cannot pick out f"2g.

Thus, the VC-index V (C1) of the class C1 is equal to 2; and hence C1 is a

VC-class. Note that  (�; �; �) = ( 1(�; �; �); :::;  m(�; �; �)). We de�ne the class

of functions C2 = f" 7�! a"+b("2�1)+c1 1(X; "; �0)+ :::+cm m(X; "; �0)j

a; b; c1; :::; cm 2 Rg such that g2(�) 2 C2. By Lemma 2.6.15 of van der Vaart
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and Wellner (1996) and assumption 8, for �xed X 2 R and �0 2 �; the class

of functions C2 is a VC-class with V (C2) � dim(C2) + 2. Finally, by Lemma

2.6.18 of van der Vaart and Wellner (1996), the sum of VC-classes builds

out a new VC-class. This yields the VC property of G.

Recall that an envelope function of a class G is any function x 7! �(x) such

that j�z(x)j � �(x) for every x and �z(�). Using that f(�; �) is bounded away

from zero, sup"2R j"f("; �)j <1 and that F (�; �) has bounded derivative with

respect to the second argument, it follows that G has an envelope function

of the form

�(") = 1 + �1"+ �2("
2 � 1)� �03 (X; "; �0);

where � = (1; �1; �2; �03)
0 is a (3+m)� 1 vector of constants. Finally, note

that our assumption 8 readily implies that this envelope has a �nite second

moment, which completes the proof of part a.

On the other hand, under our assumptions, supz2R j bFn(z)� F"(z)j = op(1).

Also, by applying the mean-value theorem, F (z;b�) = F (z;e�)+F�(z; ���)(b��e�) for some e� 2 � and ��� a mean value between b� and e�. Clearly, under
H0, e� = �0, and the last term is Op(n�1=2) from assumption 8. Analogously,

under H1, e� = ��, and the last term is Op(n�1=2) from assumption 9. Thus,

irrespective of whether H0 holds true or not, supz2R jF (z;b�) � F (z;e�)j =
op(1). Therefore supz2R j bFn(z)�F (z;b�)j p�! supz2R jF"(z)�F (z;e�)j. Under
H1, supz2R jF"(z)� F (z; ��)j > 0 and this concludes the proof of part b.

For the second test statistic observe that bCn = R f bFn(v)� F (v;b�)g2d bFn(v).
As before, the asymptotic distribution of this statistic can be obtained from

Proposition 1 and the uniform convergence of bFn(�). �
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Let us de�ne bq(�) in the same way as q(�) but replacing �0 by b�. The following
two propositions are required in the proof of Theorem 2.

Proposition A1: Suppose that assumptions 1-7 hold. Then:

a) If H0 holds and assumptions 8 and 11 are satis�ed then:

+1Z
�1

jjbq(u)� q(u)jj2f(u; �0)du = op(1):

b) If H1 holds and assumption 9 and 12 are satis�ed then:

+1Z
�1

jjbq(u)� q(u)jj2f(u; ��)du = op(1):

Proof of Proposition A1: Under assumption 7, bq(�) is continuously di¤eren-
tiable with respect to �. Thus, by a Taylor expansion we obtain

bq(�) = q(�) + q�(u)j�=��(b� � �0)=2;

where q�(�; ��) denotes the derivative of q(�) with respect to �, evaluated at

��, and �� lies between b� and �0. Observe that
+1Z
�1

jjbq(u)� q(u)jj2f(u; �0)du

� 1

4
jjb� � �0jj2

+1Z
�1

jjq�(u)j�=��jj2f(u; �0)du

� 1

4
jjb� � �0jj2 sup

v2N(�0;M0)

+1Z
�1

jjq�(u)j�=vjj2f(u; �0)du

=
1

4
Op(n

�1)Op(1) = op(1);
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where the �rst inequality follows using jjbq(�) � q(�)jj2 � jjq�(�)j�=��jj2jjb� �
�0jj2=4, and the last equality follows using assumptions 8 and 11. More

precisely, under assumption 8, it is straightforward to show that (b� � �0) =

Op(n
�1=2). Then, jjb� � �0jj2 = Op(n

�1). This completes the proof of part

a. The result of part b is obtained along the same line of argument using

assumptions 9 and 12. �

Proposition A2: Suppose that assumptions 1-7 hold. Then:

a) If H0 holds and assumption 8 is satis�ed then:

sup
z2R
jjn�1=2

nX
i=1

[I("i � z)fbq("i)� q("i)g

�
+1Z
z

fbq(u)� q(u)gf(u; �0)du]jj = op(1):

b) If H1 holds and assumption 9 is satis�ed then:

sup
z2R
jjn�1=2

nX
i=1

[I("i � z)fbq("i)� q("i)g

�
+1Z
z

fbq(u)� q(u)gf(u; ��)du]jj = op(1):

Proof of Proposition A2: As above, under assumption 7, bq(�) is continuously
di¤erentiable with respect to �. Thus, by a Taylor expansion we obtain

bq(�) = q(�) + q�(�)j�=��(b� � �0)=2, where �
� lies between b� and �0. Thus,
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under H0, observe that

n�1=2
nX
i=1

[I("i � z)fbq("i)� q("i)g �
+1Z
z

fbq(u)� q(u)gf(u; �0)du]

= n�1=2
nX
i=1

[I("i � z)fbq("i)� q("i)g � E(I(" � z)fbq(")� q(")g)]

= n�1
nX
i=1

[I("i � z)q�("i)j�=�� � E(I(" � z)q�(")j�=�� ]n
1=2(b� � �0)=2

Under assumption 8, it is straightforward to show that n1=2(b���0) = Op(1).

On the other hand, the �rst term on the right hand side is op(1) using some

uniform strong law of large numbers. This completes the proof of part a.

The result of part b is obtained along the same line using assumption 9. �

Proof of Theorem 2: In the following reasoning we assume that the null hy-

pothesis holds. Interchanging the variables, setting t = F (z; �0), we shall

�rst show that Wn(�) � Wn(F
�1(�; �0)) converges weakly to a standard

Brownian motion. Let D[0; b] (b > 0) denote the space of cadlag functions

on [0; b] endowed with the Skorohod metric2. Furthermore, de�ne the linear

mapping � : D[0; 1]! D[0; 1] as follows

�(�(�))(t) �
tZ
0

q(F�1(s; �0))
0C(F�1(s; �0))

�1[

1Z
s

q(F�1(r; �0))d�(r)]ds:

Let

Q(t) = (Q1(t); Q2(t); Q3(t); Q4(t))
0

= (t; f(F�1(t; �0)); f(F
�1(t; �0))F

�1(t; �0); F�(F
�1(t; �0))

0)0;

so that q(F�1(�; �0)) is the derivative of Q(�). It is easy to check that

�(Ql(�)) = Ql(�); for l = 1; 2; 3; 4: (7)
2See Section 14 of Billingsley (1968).
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From C(F�1(s; �0))
�1C(F�1(s; �0)) = I4 we have C(F�1(s; �0))

�1 �

f
1R
s

�
Q(r)dQ1(r)g = (1; 0; 0; 0)0. Thus �(Q1(�))(t) =

tR
0

�
Q(s)0(1; 0; 0; 0)0ds =

Q1(t). A parallel analysis establishes similar results for the remaining com-

ponents of Q(�).

Let bt = F (F�1(t);b�). Thus bVn(t) = n1=2[ bFn(t)� t] + n1=2[t� bt]. Note that
bVn(�) can be rewritten as follows

bVn(�) = n1=2[ bFn(F�1(�; �0))�Q1(�)]+n1=2[Q1(�)�F (F�1(Q1(�); �0);b�)]: (8)
Using the linearity of �(�), (4) and (5), routine calculations yield that

Wn(�) = bVn(�)� �(bVn(�)):

Using Proposition 1, the linearity of �(�) and (4), it follows that

�(bVn(z)) = �(Vn(z)) + n
�1=2Pn

i=1[f(z; �0)('1n(Xi; Yi) + �1n)

+zf(z; �0)('2n(Xi; Yi) + �2n)]� F�(z; �0)
0n1=2(b� � �0) + op(1):

Notice that the bias term �n(�) = f(z; �0)�1n + zf(z; �0)�2n can be omitted

if nh4n = o(1). Using Proposition 1 again, we have

Wn(�) = Vn(�)� �(Vn(�)) + op(1) + o(1):

Thus, as Vn(�) converges weakly to a standard Brownian bridge B(�) on

[0; 1],Wn(�) converges weakly to B(�)��(B(�)), which is a standard Brown-

ian motion on [0; 1] (see Khamaladze, 1981 or Bai, 2003, p. 543).

Let us now de�ne fWn(�) � cWn(F
�1(�; �0)). Under assumptions 7 and 8,

f(�;b�) = f(�; �0) + op(1) (this follows applying a Taylor expansion). Addi-

tionally, propositions A1 and A2 imply that assumption D1 of Bai (2003)

24



holds. Hence, to prove that fWn(�) =Wn(�) + op(1), we follow exactly the

lines of the proof of Theorem 4 of Bai (2003), that completes the proof of a.

On the other hand, under H1, the assertation can be deduced from the

probability limit of n�1=2cWn(z), which is

�(z) � F (z)�
Z z

�1
eq(u) eC(u)�1 edn(u)f(u; ��)dug;

where

eq(u) � (1; fu(u; ��)=f(u; ��); 1 + ufu(u; ��)=f(u; ��); f�(u; ��)0=f(u; ��))0;eC(u) � R +1
u

q(�)q(�)0f(� ; ��)d� ;edn(u) � R +1u q(�)f(�)d� ;

It can be easily checked that �(z) 6= 0 under H1: The result of part b follows

from here. �
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TABLE 1: Proportion of Rejections of H0

� h(1) h(2) h(3) h(4) h(1) h(2) h(3) h(4)

n = 100 n = 500

� = 0:01

0 0.005 0.004 0.003 0.003 0.007 0.006 0.008 0.006

1=12 0.015 0.032 0.016 0.026 0.095 0.126 0.149 0.162

1=9 0.049 0.037 0.027 0.034 0.254 0.307 0.339 0.357

1=7 0.072 0.069 0.064 0.064 0.419 0.491 0.521 0.535

1=5 0.144 0.132 0.130 0.151 0.712 0.769 0.792 0.803

1=3 0.369 0.376 0.371 0.376 0.988 0.994 0.995 0.996

� = 0:05

0 0.015 0.018 0.013 0.015 0.045 0.037 0.038 0.040

1=12 0.044 0.060 0.049 0.059 0.177 0.232 0.258 0.280

1=9 0.079 0.090 0.074 0.075 0.378 0.455 0.486 0.499

1=7 0.126 0.127 0.111 0.105 0.555 0.618 0.650 0.663

1=5 0.216 0.202 0.201 0.238 0.821 0.865 0.884 0.892

1=3 0.484 0.494 0.493 0.481 0.996 0.998 0.998 0.998

� = 0:10

0 0.041 0.053 0.041 0.044 0.083 0.076 0.077 0.079

1=12 0.074 0.086 0.075 0.081 0.237 0.308 0.344 0.359

1=9 0.110 0.122 0.109 0.114 0.460 0.527 0.556 0.570

1=7 0.174 0.165 0.161 0.150 0.629 0.690 0.719 0.736

1=5 0.269 0.266 0.250 0.288 0.873 0.902 0.909 0.917

1=3 0.569 0.578 0.568 0.554 0.998 1.000 1.000 1.000
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