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Network organizations

Fernando Vega-Redondo*!
European University Institute, Florence

January 21, 2008

Abstract

It is common to define a network organization as one that is fast and
flexible in adapting to changes in the underlying environment. But besides
the short-run advantages of adaptability, fast changes in the structure of
the organization can also be detrimental in the longer run. This happens,
in particular, because agents need to depend widely on that structure to
channel appropriately (and thus speed up) search.

I discuss the trade-off between adaptability and structural stability in
a changing environment where, if the structure of the organization adjusts,
information on the exact nature of the change becomes known only with
some lag. The main conclusion obtained is that, as environment becomes
more volatile, the optimal mode of the organization sharply switches from
being totally flexible to being completely rigid, i.e. no intermediate con-
figurations are essentially ever optimal. This has stark implications on
the dichothomy of stability versus change that has been highlighted by
recent organization literature.

JEL Classification nos.: D20, D83, D85.

1 Introduction

A “network organization” is usually conceived as an organization that is quick
and flexible in adapting to changes in its environment. But changes in the
structure of the organization can also be detrimental in the medium run, since
it is partly the knowledge of the organization’s structure that mediates (and thus
speeds up) search. Here I discuss the tension between these two considerations.
That is, I study the trade-off between adaptability and structural stability in a
(network) organization that confronts a changing environment.

*European University Institute; Economics Department; Villa San Paolo; Via della Piaz-
zuola 43; 50133 Florence; Italy.  Email: Fernando.vega@eui.eu.
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The model proposed to study this trade-off is particularly simple and styl-
ized. The organization consists of an underlying backbone structure (a one-
dimensional lattice network) that remains fixed and a limited number of links
that can be “rewired” over time (for simplicity, just one per agent). In the back-
ground, there is an environment that changes at a given pace, i.e. the volatility
rate. More specifically, it is assumed that every node/agent has a target node
it has to reach, whose identity independently changes at a rate p. The dilemma
faced by a node whose target has been reassigned is the following: should I
redraw my flexible link to the new target? If this is done, direct access to that
node (possibly the target as well in the immediate future) is secured. But, on
the other hand, under the assumption that freshly rewired links take some time
to become widely available to the organization at large, such an adaptation also
imposes a global cost . Namely, it removes from the immediate operational
structure of the organization some links that can be particularly valuable for
overall search.

So, in a nutshell, the problem we pose can be formulated as follows. What
is the optimal speed at which the organization should adapt to the changing
environment? To cast this question sharply, the adaptability of the organization
is supposed embodied by a single parameter ¢, the probability with which a node
will redraw its flexible link to a new target. In this setup, the answer provided
by the paper is a drastic one: depending on whether the value of p (volatility)
is high or low, the optimal ¢ (adaptability) should essentially be, respectively,
either zero or one. Thus, in this sense, one finds that an optimal organization is
either totally rigid or totally flexible, rarely something in between. As we shall
explain, this has a sharp bearing on the dichotomy stability versus change that
has recently motivated much of the organization literature.

The rest of the paper is organized as follows. Next, Section 2 provides a
brief discussion of related literature. Then, Section 3 presents the model. The
analysis is undertaken in Section 4, while Section 5 concludes.

2 Related literature

There are three distinct branches of literature quite related to our present con-
cerns. In decreasing affinity, these are: (a) the economic theory of organizations,
(b) models of search in complex networks, (c) the transactive-memory theory of
organizations. I briefly discuss each of them in turn.

The economic theory of organizations has produced a huge body of research
whose focus has been both on incentive issues and/or the way in which organiza-
tions can effectively handle diverse and decentralized information. In the latter
vein, the work of Radner (1993) was a seminal contribution that (abstracting
from incentive considerations) first modelled explicitly the organization as a net-
work of informal flows. Other subsequent researchers have followed his lead (see
e.g. Bolton and Dewatripoint (1994), van Zandt (1999), and Garicano (2000)),
all aiming at characterizing the optimal network structure that, under vary-
ing conditions and in different senses, best pools the information disseminated



throughout the organization.

In recent years, and partly motivated by the rise to prominence of internet,
there has been a surge of interest on the problem of how to conduct effective
search in large and complex social networks. Building upon the early experimen-
tal work of Milgram (1967) on “small worlds” and the subsequent theoretical
developments of Watts and Strogatz (1998), a key issue has been that of search-
ability. More specifically, the question is how to find short paths joining the
nodes of large networks which involve (as indeed happens in the real world) a
significant random component. Kleinberg (2000) provided key insights on the
problem, leading an approach that has been adapted by several authors — see
e.g. Guimera et al. (2002) or Dodds et al. (2003) — to address the problem of
how to design the (fixed) network of large organizations.

Finally, I refer to the so-called transactive-memory theory of organizations.
This theory originates in the work of Wegner (1986). He stressed the importance
of the process by which, as new information arrives to an organization, it is first
allocated to individuals, then registered in the “organizational directory,” and
later retrieved in the most efficient manner. This three-fold mechanism is what
has been called the organization’s transactive memory system. A large body
of theoretical and empirical literature has followed suit (see e.g. Moreland and
Argote (2003) for a survey). In much of it, researchers have emphasized the
importance of informal (and thus flexible) links in the successful implementation
of an organization’s transactive memory.

A good case in point is provided by the empirical work of Hansen (2003).!
He studied 120 product development projects in a large electronics company,
where each project was separately undertaken by one of the 41 business units of
the firm. Hensen started by constructing a knowledge network, on the basis of
the informal contacts identified among the members of the different units. Then,
much in line with the key assumptions of our model, he found that the overall
performance of each unit (specifically, the fraction of projects completed and the
speed of completion) was highly dependent on the existence of short network
paths to other units possessing relevant knowledge. Indirect connections, in
other words, were crucial for good results, but their value was found to decay
significantly with distance.? This, indeed, is consistent with the central measure
of performance contemplated in our model, which in turn underlies the problem
of network design addressed by our theoretical analysis.

3 The model

Our theoretical approach is purposefully simple and stylized, in order to cap-
ture the main ideas in the starkest fashion. Consider a large set of nodes
N ={1,2,...,n} arranged along an organizational backbone, which is here as-

ISee also Hansen (1999) and Schulz (2003).

2These considerations were most decisive for the transfer of knowledge that could be largely
codified. Instead, for hardly codifiable knowledge, direct and close contact between the source
and the target played a primary role.



sumed to be a one-dimensional lattice without boundaries, i.e. a ring. Each
node 7 is connected to both of its direct neighbors in the backbone, ¢ — 1 and
i + 1 (where the index here is interpreted as “modulo n”). These links are in-
terpreted as formal and rigid ones, possibly reflecting the formal chart of the
organization. In addition to such formal links, every 7 also has one additional
link to some «(i), which will generally be “long-range” (i.e. far away from i on
the underlying backbone). These long-range links are flexible, possibly informal,
and can be adjusted over time, as determined by the plasticity/adaptability of
the organization (see below for details). For the moment, let start by assuming
that each a(7) is randomly selected from N\{i} with uniform probability. The
resulting (undirected) network — consisting of the backbone plus the long-range
links — will be denoted by I'.

Let us further postulate that each node ¢ € N has a target 7(i) € N\{i},
whom 4 has to reach in order to address a specific demand or tackle a particular
problem. Again, let us start by assuming that 7(¢) is randomly selected from
N\{i} with uniform probability. Then, given the prevailing network I" and an
array of targets 7 = [7(¢)]7.; the aim of the organization is to minimize the
average path length (along the network) between every node and its target, so
that its objective function can be identified with

p=—{di,7(1) | T);en -

But, as advanced, the focus of the paper is on the tension between adapt-
ability and structure in a dynamic context where the environment changes over
time. So let us introduce time into the model, indexing it by ¢ = 0,1, 2, ... and
dating the prevailing states w; = [14(¢), '] accordingly. Suppose that the initial
state wg = [10(4), 0] is constructed randomly, as above. Then, as time pro-
ceeds, the law of motion that governs the change in w; is decomposed into the
following components (assumed, for simplicity, to be implemented sequentially):

1. Independently for each node 4, its previous target 7¢—1 (%) is redrawn afresh
with probability p € [0,1]. (Thus, with probability (1 — p), we have
7¢(i) = 7t—1(¢).) When a new target for ¢ is redrawn, each j € N\{i} is
selected with uniform probability.

2. Independently for each node i, its previous long-range link to agent c;—1 (%)
is rewired with probability ¢ to the current target 7.(¢). (Thus, with
probability ¢, the long-range link of 4 connects to 7—1(%).)

3. For each i, the shortest average distance is computed, but using only the
links in T';_; NT;. That is, only the informal links that have remained in
place for at least one period form part of the operational structure of the
organization. (At the beginning of the process, we posit that I'o =I'_1, so
that all initial links form part of the organizational structure.) Formally,
therefore, we simply measure organizational performance at each ¢ through

pr=—A{d(i,7e(0) [ Teo1 ML)y - (1)



The above three items have the following interpretation. The first one
embodies the idea of wolatility: over time, the environment evolves and the
needs/tasks/objectives of individual nodes are affected by it. The parameter
p € [0, 1] modulates the rate at which the environment changes, thus leading to
pressure for some adjustment to take place.

The second item specifies how and when, in response to such an adjustment
pressure, actual changes in the network structure indeed occur. The parameter
g € [0,1] is a measure of organizational plasticity. It can be conceived as an
attribute of organizations — say, a part their “culture” — and will generally differ
across them. Sometimes, it may also be regarded as an outcome of design, at
least partially, as when the declared aim of a certain policy is to reshape the
culture of the organization in order to improve its performance.?

Finally, concerning performance, the third item proposes a precise way of
measuring for it that is identified with the average network distance between
every node and its corresponding target. This is motivated by the idea that the
network distance separating an agent from a valuable partner (e.g. one that
helps undertake current tasks) should have an important bearing on the speed
and success of job completion. As explained above — recall the Introduction —
this idea is not only intuitive but also enjoys some significant empirical support.

4 Analysis

Our main objective is to shed light on the interplay between the plasticity of the
organization (as given by ¢) and the wvolatility of its environment (as captured
by p). To fix ideas, a useful way to grasp this relationship is to address an
optimal-design problem in which p is the exogenous parameter and ¢ is the
decision/design variable. Naturally, this problem must be formulated in a long
intertemporal framework, where volatility and adjustment have a full chance to
unfold. Thus, let us take a truly long-run perspective and identify the overall
performance of the organization with

1 T
p=fim 72 e

Since the underlying stochastic process is ergodic, p is independent of initial
conditions and can be conceived as a function of p and ¢ alone. Let us write
p(p,q) to reflect such dependence. Then, our main theoretical concern is well
captured by an optimization problem formulated as follows: given any p € [0, 1],
find ¢*(p) such that

q*(p) € arg max_ p(p, q). (2)
qE[O,l]

3See, for example, the influential work of Schein (2002, 2004) who conceives culture as the
background for change in any organization. In fact, somewhat in line with the role of ¢ in
our model, he suggests that the “shared assumptions and beliefs about the stability of human
relationships” is a key cultural dimension that differentiates organizations.



In essence, this optimization problem reflects a trade-off between two oppos-
ing objectives:

e adaptability — swiftness in responding to a mismatch between links and
targets;

e structure — preservation of the network connectivity required to conduct
search effectively.

To gain an analytical understanding of the essential implications resulting
from this trade-off, we study the problem through an idealization of our frame-
work in which the dynamics of the system is identified with its expected motion.
As customary, we call such an idealization the Mean-Field Model (MFM). Given
the stochastic independence displayed by the forces impinging on each node
(both concerning volatility and link rewiring), it is natural to conjecture that
the MFM should capture the essential behavior displayed by large finite systems.
Indeed, this will be confirmed by numerical simulations, whose performance are
found to match with great accuracy the theoretical predictions.

The MFM is defined by a dynamical system formulated on a population-wide
(anonymous) description of the evolving situation. Then, under the implicit
assumption that stochastic correlations can be ignored, a sufficient specification
(or state) of the system is given by the fraction of nodes that are currently on
target — i.e. those connected to their respective target through their long-range
links. Let u(t) stand for the fraction of such nodes prevailing at some ¢. Then,
its law of motion is given by the following simple difference equation:

pt+1) = (L= p)u(t) + qpt)p + (1 — pu@))].

Thus the system globally converges to a unique positive fraction of nodes on
target given by
* q

p+aq(l—p)
This implies that, in the long run, the total number of long-range links that are
fully operational (i.e. have been in place for at least one period) is given by:

1

o= [I-pp+(1 -1 —1-pu)n
_ -9 +el-p)
p+q(l—p)

Our next step is to compute the average distance between a node and its
target, when a direct link does not exist between them. To this end, notice that
the “operational network” prevailing at ¢ (i.e. I't—1 NT':) can be conceived as a
small-world network of the sort studied by Newman et al. (2000), itself a varia-
tion of the original setup proposed by Watts and Strogatz (1998). Specifically,
the number of shortcuts in the small-world network can be identified with the
number A of operational long-range links in our setup. This then allows one to
rely directly on the expression derived by Newman et al. (2000) to approximate



the average network distance in their small-world setup. In terms of our present
notation, they found it to be proportional to a function F(\) given by

2 A
F(A) = ———tanh™! | ———|.
A%+ 22 (m%zx)

The function above, of course, only applies to the nodes that are not on target.
Since the fraction of these in the long run is [1—(1—p)u*], the objective function
1 to be maximized is

V(P q) = —[1 — (1 —p)u*(p, )IF (X" (p,q))

where the notation u*(p, ¢) and A*(p, ¢) highlights the fact that both parameters
of the model, p and ¢, affect the long-run values. Thus, in sum, the optimization
problem that concerns us here can be formulated as follows: given any p € [0, 1],
find a solution ¢*(p) of the optimization problem

max  — [1 — (1 —p)u"(p,)]F (X (p, ). (3)
q€[0,1]
Once the full dependence on p and ¢ is made explicit, the function 1 (p, q) is
found to display a complicated form:

41— (1—pzq
¥p0) = - pil x

2
q(1-p) _ _ _a(1-p) 2 |_a(1-p) _ _ _q(1-p)
\/Sn {p+q(1fp) +(1-4q) (1 p+q(1fp))} +dn {pﬂ(lfp) +(1-q) (1 p+q(1*p))}
q(1—p) _ _ _aq(1-p)
2n [P+q(1—p) +(1-9q) (1 P+Q(1—p)>}
2
q(1—p) _ _ _q(1-p) 2 |_a(1—p) _ _ _q(1-p)
\/Sn [P+q(1*p) +{1-9) (1 p+q(1fp))} +n {Pﬂ(lfp) +{1-9q) (1 p+q(1fp))}

This leads us to approaching the optimization problem (3) through numerical
methods, which can be used to deliver a specific solution to any desired level of
accuracy (as a function of the volatility rate p). Figures 1-3 describe the solution
q*(p) for different values of population size and show that it is qualitatively the
same across a wide range in orders of magnitude.

The analytical solutions depicted in Figures 1-3 closely match the behav-
ior observed in numerical simulations of the model, even if the population is
relatively small. By way of illustration, Figure 4 shows the corresponding simu-
lation results for n = 100. Specifically, one finds that the only two values of p for
which the highest p was achieved at an interior ¢ (i.e. one satisfying 0 < g < 1)
were p = 0.55, 0.575. Below these values, the optimal ¢ is 0, and above them it
is 1. These results are closely in line with the theoretical analysis — in particular,
that described in Figure 1, which also applies to a context with n = 100.

The results reported above provide a stark picture of the way in which the
tension between structure and adaptability is resolved in a network organization

tanh ™!
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Figure 1: Optimal plasticity ¢*(p) as a function of volatility p for a population
size n = 102. The function is shown both for the whole domain p € [0, 1] as well
as for a scaled-up version that is “zoomed in” on the region where the transition
from high to low optimal values takes place.
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Figure 2: As in Figure 1, for n = 10°.
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Figure 3: As in Figure 1, for n = 100,
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Figure 4: The upper surface depicts the average performance p = % Z?zl Py
over T' = 20000 rounds in a context consisting of n = 100 agents where each p,
is computed as in (1). The lower line on the p-¢ plane represents the plasticity
q for which p is maximized at each volatility rate p considered. Specifically, p
was changed along a grid with a step value A = 0.025. The only two values
of p for which the highest p was achieved for an interior ¢ (i.e. one satisfying
0 < g < 1) were p = 0.55, 0.575. Below these values, the optimal ¢ was 0, and
above them it was 1.
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that is suitably described by our model. For low levels of volatility, the rate of
change in the organization matches that of the environment since the plasticity
of the organization is maximal. Thus, as the environment gets more volatile, the
organization undergoes a fully parallel increase in link adjustment. This state
of affairs, however, ends abruptly at levels of volatility well below complete
target turnover. At a value of p sizably below 1, the optimal plasticity of the
organization falls steeply to zero. There is, therefore, a wide range for p in which
the best performance is achieved by freezing the network of the organization at
its original random configuration.

These conclusions shed light on points made, in diverse forms, by the recent
organization literature. For example, Schein (2002, 2004) argues that stability
and change are “two sides of the same coin,” and that both are part of any
successful adaptation to an environment in perpetual flux. Moreland and Argote
(2003), on the other hand, elaborate on this idea by emphasizing that too much
flexibility may deteriorate the so-called “intellectual capital” of the organization
(i.e. the knowledge available to an organization through its workers). This
capital is accessed by the organization’s transactive-memory system — recall
Section 2 — whose operation is crucially facilitated by “a shared awareness among
workers of who knows what (...)”.

Our analysis may be regarded as having descriptive and normative implica-
tions. On the descriptive side, a prediction of the model is that, to the extent
that organizations can be taken to operate efficiently, the most rigid ones should
be those operating in the most volatile environments. This, however, raises nor-
mative issues as well, bearing on the likely conflict between individual incentives
to adjust and the effects of such an adjustment on the overall performance of
the organization. Even though the model does not take individual payoffs into
account, an extended approach that would do so should naturally posit that
they are inversely related to individual node-target distances. Then, it is clear
that, if one abstracts from adjustment costs, maximum plasticity would be op-
timal from a purely individual perspective. But, as we have understood, this
may be suboptimal for the organization as a whole if the volatility of the envi-
ronment is relatively high. In essence, the problem at stake is a classical one of
externalities — in this case, externalities on the search effort by others. And, as
usual, what the problem may require is simply an appropriate intervention that,
by impinging on individuals ability or/and payoffs to adjust, lead to a socially
optimal outcome. To formulate and analyze this “implementation problem” in
any detail is outside the scope of the present paper,

5 Summary and future research

The paper studies a model of a network organization that lives in a volatile
environment and must therefore face the trade-off between the adaptability to
changing circumstances and the preservation of an operational network struc-
ture. The theoretical framework is very stylized, which allowed us to obtain
rather clear-cut conclusions. Specifically, we found that the positive effects of
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adaptability completely dominate for low levels of volatility but are sharply
offset when higher levels are achieved (well below, however, the situation of
maximum turnover). This raises positive and normative issues on the “dynamic
design” of organizations, which are left for subsequent research.

Additional issues to be explored in the future concern the sensitivity of the
conclusions to some of the simplifying features of the approach. By way of
illustration, I close the paper with the outline of some variations of the model
that seem worth considering.

1. The model assumes that the rewiring of a long range link occurs with the
same probability, independently of the distance closed by the adjustment.
In the spirit of our approach, one could propose instead that, for example,
rewiring occurs (again with some probability ¢, a design parameter) only
if that distance exceeds a certain threshold. Naturally, this could just
improve the overall performance of the organization. But a trade-off akin
to that of the original model would still arise and, correspondingly, similar
qualitative conclusions may be expected.

2. The framework posits no limit on the number of links an agent can have
(either supported by herself or others). This, of course, is unrealistic for
any reasonable interpretation of what links entail. Indeed, if no such con-
straints were binding, an organization that is structured as a star (i.e. all
agents connected to a central agent) would achieve the best performance
in many cases. The implicit assumption of the model is that such a star
configuration is not feasible and, therefore, the organization is generally
better off displaying some adaptability as the environment changes. A
model where the degree of nodes is subject to some relatively tight upper
bound would make that implicit feature of the model fully explicit.(For
example, it could be assumed that any contemplated rewiring cannot be
completed if it violates that capacity constraint.) It seems reasonable to
conjecture that no essential insight would be afected by this variation.

3. The model has assumed that the backbone of the organization is a regular
boundariless lattice. Often, however, the formal and stable network of
an organization is best conceived as displaying a less symmetric form.
A natural (but still stylized) alternative is given by a hierarchical tree
structure, where each individual — except for the single apex — is connected
to one “supervisor.” Such a hierarchy is descriptive of many of the real-
world structures observed in organizations, and probably this is partly due
to the advantages it allows in the routing and processing of information
(cf. Radner (2003)). Recently, however, it has been argued (see e.g.
Dodds et al. (2003)) that the addition of long-range links connecting
distant parts of an underlying hierarchic structure can greatly improve its
overall performance. Indeed, this is supported by a large body of empirical
research which finds that “(...) much of the real work in any company
gets done through an informal organization, with complex networks of
relationships that cross functions and divisions.” (Cf. Krackhardt and
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Hanson (1993).) The models that have been proposed in the theoretical
literature to understand this phenomenon, however, have been mostly
static. They conceive the organization network as fixed, even if it consists
of a complex blend of hierarchic and transversal links. To enrich that
approach with a genuinely dynamic model of the organization seems a
welcome development that could be carried out along the lines suggested
in this paper.
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