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Abstract

The paper suggests a model of stochastic outliers whose number remains bounded as the sample

size increases. A theorem for weak convergence to a compound Poisson process is combined with a

standard FCLT to obtain the asymptotic distributions of statistics depending on both the ordinary

and the outlying shocks that affect a time series. Results for deterministic models of outliers are

derived as special cases by conditioning, and a specification of the outliers’ size as a function of the

sample size results in properties similar to those of asymptotically frequent stochastic outliers.
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1 Introduction

A constant concern in time-series econometrics is the modelling of outlying events, both with

permanent effect (structural breaks) and with temporary effect (generating temporary-change

outliers). In this paper the models are classified according to two aspects of the timing of such

events: deterministic versus stochastic timing, and finite versus infinite asymptotic frequency

of occurrence.

Timing is deterministic if either the absolute or the relative (w.r.t. the sample size) dates

at which outlying events occur are considered known. When timing is stochastic, however, the

occurrence of an outlying event is modelled as random. As Perron [7] notes, the deterministic

specification can be thought of as obtained from the stochastic one by conditioning on the

dates of outlying events.

According to whether the (expected) number of outlying events remains bounded in asymp-

totic arguments or not, I will call these events respectively asymptotically rare and asymptot-

ically frequent.

An example of deterministic asymptotically rare structural breaks is provided in Perron’s

work ([7], [8]), where the number and the relative position of breaks in the sample are fixed.

Franses and Haldrup [4], hereafter FH, work with a stochastic specification of outliers. With

the notation of this paper, for p ∈ (0; 1) let {¼t}Tt=1 be a sequence of Bernoulli B (1; p) random
variables (rv’s) and {´t}Tt=1 be a sequence of zero-mean rv’s. Then ¼t´t generates outliers:
when ¼t is one, an outlying shock with size ´t occurs. In contrast with Perron’s approach, the

outlying shocks of FH are asymptotically frequent since their expected number, Tp; grows at

the rate of T . Regular shocks (´t) and outliers (¼t´t) are put asymptotically on equal footing

in the sense that the same limit theorems apply to random elements constructed from ´t and

to those constructed from ¼t´t:

The asymptotic theory suggested here, similarly to FH, is for stochastic outliers. However,

as in Peron’s work, the outliers are asymptotically rare. To the contrary of frequent-events

asymptotics, the rare-events approach preserves the difference between ordinary shocks and

outliers in the limit. It leads to natural results - first, the weak limit of a discrete-time jump

process is a continuous-time jump process, not a continuous process as it would be in FH. The

analogue of the FCLT, under the condition that the expected number of jumps is independent
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of T; is (with a slight abuse of notation)
P[Tu]
t=1 ¼t´t

w→ J (u)
d
=
PN(u)

i=1 ´i: Here the limiting

process is a compound Poisson process whose counting process N (u) has on average as many

jumps as
P[Tu]

t=1 ¼t´t:Wiener asymptotics for the ordinary shocks can be combined with Poisson

asymptotics for the rare shocks to get jump-diffusions in the limit.

Another natural aspect of rare-events asymptotics is that, by a conditioning argument, they

have the results for deterministic asymptotically rare outliers as special cases. For example,

consider a white noise with a single level shift, xt = "t+°I ({T¸ < t}) ; where "t ∼ iid
¡
0; ¾2

¢
: Then

1
T

PT
t=1 x

2
t
P→ ¾2+¸°2: Let the stochastic formulation xt = "t+

Pt
i=1 ¼i´i be adopted instead, with

the assumption that level shifts are independent of the "t-s (an exogeneity assumption). If rare-

events asymptotics are applied, the convergence 1
T

PT
t=1 x

2
t
w→ ¾2 +

R 1
0
J2 obtains: Conditionally

on a single jump of size ° occurring at relative time ¸, the latter result specializes to the

deterministic one (see section 2.4).

The paper has the following structure. The next section contains the basic functional

convergence theorem and some corollaries necessary for the analysis of econometric models.

Applications are provided in section 3, where examples of Perron [8] and FH are rephrased and

analyzed by means of the claims in section 2, and the results are compared with the original

ones. Section 4 concludes. All proofs are collected in an appendix.

2 A functional limit theorem for jump processes

2.1 Definition and comments

For two vectors x and y of the same dimension, let x·y denote their Hadamard (component-wise)
product.

Definition 1 A k-dimensional random walk ¹t; t = 1; :::; is called a jump process when it has the

representation

¹t =
Xt

i=1
¼i · ´i;

where:

¼t is a k-dimensional iid sequence, the components of which are natural-valued random variables,

each of them taking the value of 0 with a positive probability, and are independent both serially and

contemporaneously;
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´t ∼ iid (0;Σ´) is a sequence of k-vectors;
¼t is independent of ´s, t; s = 1; 2; :::

The name reflects the idea that ¹t ”jumps” when ¼t is different from zero. The independence

properties are not related to the jump behavior, but are nonetheless included in the definition

because throughout the whole subsequent argument they are assumed to hold.

In the discussion of asymptotics, sequences of jump processes indexed by T are considered:

¹Tt =
Pt
i=1 ¼Ti · ´i. All processes ¹T are generated with the same sequence of jump sizes ´t

but with different sequences of jump indicators ¼Tt: The distributions of ¼T are related by the

requirement that E
¡
ΣTt=1¼Tt

¢→ κ; by which the number of jumps is stochastically bounded in

T:

For the practical purposes of data analysis a sample of fixed size T is supposed to be

available, and the data generating process is thought of as involving in one form or another

¹T for that particular T . Thus the observed data depend on only one term of the sequence of

jump processes. The remaining terms only exist in the ideal world.

This setup is simply a device that allows the rarity of the jumps to be preserved in the

limit. The asymptotics derived for the sequence ¹T will be referred to as asymptotics for jump

processes with rare jumps. These are non-Wiener asymptotics for a particular sequence of

random walks.

The setup can be regarded as a generalization of the following construct characterized by

jumps at fixed relative dates. For k = 1; let N(u) be a Poisson process defined on [0; 1] and with

intensity κ : Define ¼Tt = N
¡
t
T

¢−N ¡ t−1T ¢ ; t = 1; :::; T: Then E ¡ΣTt=1¼Tt¢ = E (N (1)) = κ; and
¹T [Tu] =

[Tu]X
t=1

¼Tt · ´t =
N(u)X
i=1

´[¿ iT ]+1;

where ¿ i are the times of jump of N (u) : Heuristically, for big T the probability of observing

more than one jump in the intervals [ t−1
T
; t
T
) becomes negligible, and asymptotically all addends

on the RHS tend to be different terms of the sequence ´t: More precisely, it can be shown that

¹T [Tu]
w→PN(u)

i=1 ´i (the meaning of this weak convergence is clarified in section 2.2).

In fact, the weak convergence result can be obtained under fewer assumptions, e.g. it

will still hold if instead of N(u) a sequence NT (u) of processes distributed as N (u) is used to

generate ¼Tt: This corresponds to fixing the distribution of the jump times (and the expected

4



number of jumps in particular) but without creating any dependence between jump times for

different T:

This paper concentrates on weak limit theory for binary binomial ¼Tt’s.

Notation 2 In the rest of the text, the Hadamard product ¼Tt · ´t is denoted by ±Tt; or by ±t when the
dependence on T is subsumed:

2.2 The theorem

The argument takes place in the set of all functions [0; 1]→ Rk which are continuous from the

right and with limits from the left (cadlag). When this set is endowed with the k−dimensional
Skorohod metric (3), the resulting metric space will be denoted by DRk [0; 1] ; it is complete

and separable, [5]. The open balls w.r.t. dBk generate the Borel sigma algebra Dk on this
space, which turns out to be the product of the sigma algebras generated in the coordinate

spaces by the 1-dimensional Skorohod metric (although DRk [0; 1] is not a product space, see

the appendix).

Let ¼Tt and ´t be defined on some probability space (Ω;B;P) : Consider for u ∈ [0; 1] the
process ¹T (u) defined by

¹T (u) =

[Tu]X
t=1

±Tt:

Then, for a fixed ! ∈ Ω; ¹T (u) ∈ DRk [0; 1], while for a fixed u ∈ [0; 1] it is a random variable.

Combined with the fact that the finite-dimensional sets form a determining class of DRk [0; 1],

this implies that ¹[Tu] is a random element on DRk [0; 1] ;[1] p.57. It generates a sequence of

probability measures on (DRk [0; 1] ;Dk) through PT (B) = P(¹T (u) ∈ B) for every Borel set
B ∈ Dk: In the next theorem weak convergence of ¹T (u) means weak convergence of this

sequence in the space of all probability measures on
¡
DRk [0; 1] ;Dk

¢
:

Theorem 3 Let ¼Tt and ´t satisfy for every fixed T the assumptions of Definition 1 with ¼(i)Tt ∼
B(0; p

(i)
T ); i = 1; :::; k: Then the conditions Tp

(i)
T → κi; i = 1; :::; k; imply

¹T (u)
w→ J(u);

where the components J(i)(u); i = 1; :::; k; are jointly independent compound Poisson processes J(u)(i) =PN(i)(u)
j=1 ´

(i)
j ; N

(i)(u) are Poisson process with jump intensity κi; and N(i)(u) are independent of ´(i)·

for all i.
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The independence of the components of J(u) is due to the fact that as T →∞; the proba-
bility that two different components of ¹T (u) jump simultaneously tends to zero, and so the

contemporaneous dependence between the components of ´t becomes irrelevant asymptotically.

The statement of the theorem is a functional analogue of Poisson convergence. The result is

intuitive:
PT
t=1 ±Tt need not be normalized to achieve convergence; it is only compressed along

the horizontal axis to obtain ¹T (u) : The very mechanics of the transformation show that if

the former process has only a few jumps (on average), so does the latter.

2.3 Corollaries to functional Poisson convergence

Corollaries needed for the analysis of linear models are derived from the statement of weak

convergence to a compound Poisson process. These are based on the following extension of

Theorem 3:

Claim 4 Let "t ∼ iid(0;Σ") be a p−variate random sequence independent of ¼Ts and ´s for all t; s.

Then

A

 1√
T

P[Tu]
t=1 "t

¹T (u)

 w→ A

 W (u)

J(u)


holds in the topology of DRn [0; 1] ; where A is an arbitrary n× (p + k) matrix and W (u) is a Wiener
process with covariance matrix Σ".

In the case p = 0 this claim will be referred to as the functional Poisson convergence theorem

(FPCT).

Work in the space DRk [0; 1] is sometimes rendered difficult by the fact that it is not a

topological vector space (i.e. xn → x and yn → y in the Skorohod topology do not imply

xn + yn → x + y). The formulation of the claim for an arbitrary A shows that this difficulty

does not apply to the processes under study here.

A corollary of claim 4 for processes with linear structure is given next.

The notation vecA = Av is used for the vector obtained by stacking the columns of a matrix A

under one another. The integral
R u
0
X(s−)dY (s) is denoted by R u

0
XdY: When X is continuous,

for example X = W , this convention is not important, since
R u
0
X(s−)dY (s) = R u

0
X(s)dY (s):

However, if X = J; then
R u
0
X(s)dX(s) is not well-defined in the sense of Stieltjes (the integrand

and the integrator are both left discontinuous at the points of jump), while
R u
0
X(s−)dX(s) is.
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The quadratic variation process X(u)Y (u)0 − R u
0
XdY 0 − R u

0
(dX)Y 0 is denoted by [X; Y ]u : If

X is purely discontinuous, it holds that [X;Y ]u =
P

s≤u∆Xs∆Y
0
s :

Finally, let Jc(u) =
R u
0
J(s)ds;

R
XdY =

R 1
0
X (s) dY (s) ; and

R
X =

R 1
0
X (s) ds:

Corollary 5 Let µ(z) =
P∞

i=0 µiz
i; Á(z) =

P∞
i=0 Áiz

i and ¿(z) =
P∞

i=0 ¿ iz
i be convergent for |z| <

1 + ± with some ± > 0. For t ≤ T , let ºTt =
Pt

j=0 µj¹Tt−j ; °Tt =
Pt
j=0 Áj¹Tt−j; ¸Tt = ∆ºT t =Pt

j=0 µj±T t−j ; !Tt = ∆°Tt =
Pt

j=1 Áj±Tt−j ; and Ãt =
P∞

i=0 ¿ i"t−i: Then
³
º 0T [Tu]; °

0
T [Tu]

´0
T−

1
2
P[Tu]

t=1 Ãt

 w→

 ¡
J(u)0µ0(1); J(u)0Á(1)0

¢0
¿(1)W (u)

 (1)

in the Skorohod topology of DR2k+p [0; 1] ; and the following converge jointly:

a. vec
³PT

t=1 ¸Tt!
0
Tt

´
w→ (
P∞

i=0 Ái ⊗ µi) vec [J; J ]1 ;
b.
PT

t=1 ºTt!
0
Tt

w→ µ(1)J(1)J(1)0Á(1)0 − µ(1) R (dJ)J 0Á(1)0 −P∞i=0P∞j=i+1 µj [J; J ]1 Á0i
= µ (1)

R
J (dJ)0 Á (1)0 +

P∞
i=0

Pi
j=0 µj [J; J ]1 Á

0
i;

c. T−
1
2
PT

t=1

³Pt−1
i=1 ¸Ti

´
"0t = T−

1
2
PT

t=1 ºTt−1"
0
t
w→ µ(1)

R
J(dW )0;

d. T−
1
2
PT

t=1

³Pt−1
i=1 Ãi

´
¸0Tt

w→ ¿ (1)
R
W (dJ)0µ(1)0;

e. T−
3
2
PT

t=1

³Pt
i=1 ¸Ti

´³Pt
i=1 Ãi

´0
= T−

3
2
PT

t=1 ºTt
³Pt

i=1 Ãi

´0 w→ µ(1)
R
JW 0¿ (1)0 ;

f. T−1
PT

t=1 ºTt°
0
Tt

w→ µ(1)
R 1
0
JJ 0Á(1)0;

g. T−
1
2
PT

t=1 ºTtÃ
0
t
w→ µ(1)

R 1
0
J(dW )0¿(1)0;

h. T−2
PT

t=1

³Pt
i=1 ºTi

´
°0Tt

w→ µ(1)
R 1
0 J

c J 0Á(1)0;

i. T−3
PT

t=1

³Pt
i=1 ºTi

´³Pt
i=1 °Ti

´0 w→ µ(1)
R 1
0 J

c Jc0Á(1)0;

j. T−
3
2
PT

t=1

³Pt−1
i=1 ºTi

´
Ã0t

w→ µ(1)
R 1
0
Jc(dW )0¿(1)0 = µ(1)

h
Jc(1)W (1)0 − R 1

0
JW 0

i
¿(1)0:

From now on the index T to ±; ¸; º; ! and ° will be subsumed.

2.4 Convergence of some conditional measures

Here the weak convergence of ¹T (u) is considered conditionally on the location and the number

of its jumps. Two types of conditions are introduced: conditions with zero limiting probability,

indicating the precise location of some jumps, and conditions with non-vanishing probability,

restricting the number of jumps.

In section 3.1 convergence conditional on the known location of jumps will allow asymptotic

results derived for deterministic rare jumps (e.g. [8]) to be obtained as special cases of the
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specification with stochastic rare jumps.

Restricting the number of jumps is sometimes necessary for technical reasons. Consider

for ease of exposition the univariate case. There are statistics depending on both " and ±;

which have different limiting distributions when NT (1) =
PT

t=1 ¼t is zero and when it is pos-

itive. Different distributions obtain if, given NT (1) > 0, the jump components dominate the

"−components and thus determine the limiting distribution, while given NT (1) = 0, the limiting
distribution is determined by the "-components.

As an example, consider the statistic

T

PT
t=1 "t

Pt−1
i=1 "i +

PT
t=1 ¹t

Pt−1
i=1 ¹iPT

t=1

³Pt−1
i=1 "i

´2
+
PT

t=1

³Pt−1
i=1 ¹i

´2 :
The numerator normalized by T 2 converges to

R
JJc; and the denominator normalized by T 3;

to
R
J2: However, the statistic itself does not converge to

R
JJcR
J2
; since the probability that this

expression is not well-defined is positive (P (N(1) = 0) > 0). Meaningful limit results are ob-

tained by conditioning. Conditionally on NT (1) = 0, the statistic converges to
R
WdWR
W2 , while

conditionally on NT (1) > 0; the limiting distribution is that of
R
Jc+J+R
(Jc+)

2 :Here J+(u) denotes a com-

pound Poisson process conditioned on a positive number of jumps.1 The unconditional limiting

distribution can be expected to be (and is) that of
R
WdWR
W2 I {N(1) = 0}+

R
Jc+J+R
(Jc+)

2 I {N(1) > 0} :
The asymptotic results from the previous subsection remain valid after conditioning if J(u)

is replaced by J+(u): This is a corollary of the next claim (formulated for the univariate case).

Claim 6 For u ∈ [0; 1] and k = 1; denote the process
P[Tu]

t=1 ¼Tt by NT (u) : Let 0 ≤ s1 < s2 < ::: <

sk ≤ 1 and 0 < u1 < u2 < ::: < um < 1 be given points. For a counting process n (u) defined on [0; 1]

consider the condition E (n) ; given by n (si) − n (si−1) = li ∈ N; i = 2; :::; k; and the condition C (n)
that jumps occur at relative times ui; i = 1; :::;m; and possibly at other dates. Then:

a. ¹T (u) |E (NT ) w→ J (u) |E (N) ;
b. ¹T (u) |C (NT ) w→ J (u) |C (N) ;
c. ¹T (u) |E (NT )&C (NT ) w→ J (u) |E (N)&C (N) ; provided that the two conditions E and C are

consistent with one another, i.e. between any si−1 and si there are no more than li points of the uj-s.

Condition E restricts the number of jumps between certain dates. One example is k =

2; s1 = 0 and s2 = 1; when a condition on the total number of jumps in the interval [0; 1]

1 The conditioned process J+ has a more complicated structure than J; since its increments are not independent.
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obtains. Another example is an arbitrary k and a condition containing n (si)− n (si−1) = 0 for
some i; specifying the absence of jumps between two relative dates.

Condition C fixes the location of some but not all jumps. When all jump dates are known,

this can be formulated as a special case of E&C:

Corollary 7 ¹T (u) | {NT (1) > 0} w→ J (u) | {N (1) > 0} =: J+ (u) :

When a data set is a realization for which NT (1) = 0, it is indistinguishable from a data

set generated by a model without jump components, and should be analyzed as if it were

generated by such a model. Therefore the assumption NT (1) > 0 is the natural one to justify

the analysis of jumps and will be made with no loss of generality from now on.

Corollary 5 remains valid for the conditional measures, since the same proofs apply.

3 Examples for univariate processes with AR(1) and jump com-

ponents

This section provides examples of applications of the asymptotic theory derived above. Two of

the examples concern issues related to the size and the power of the Dickey-Fuller (DF) test.

Although these have already been studied in the literature, Perron [8] and FH [4], different

methods were used. The goal here is to show how the existing results fit in the framework of

stochastic asymptotically rare outliers. The third example aims to show that this framework

is a natural bridge between discrete and continuous time.

The processes considered in the first two examples are of the class

yt = ½
ty0 +

t−1X
i=0

½i"t−i + jump component, t = 1; :::; T;

with ½ ∈ (−1; 1] and "t ∼ iid
¡
0; ¾2

¢
: The jump component is specified either as

Pt−1
i=0 ¿ i¹t−i; to

represent permanent shifts in the level of yt; or as
Pt−i

i=0 ¿ i±t−i; to represent outlying transitory

effects on yt: The series ¿ (z) =
P∞

i=0 ¿ iz
i satisfies the assumption of corollary 5.

A distinction is often made between additive and innovational jump components. Additive

components correspond to ¿0 = 1; ¿ i = 0; i ≥ 1 and affect yt instantaneously, with no transition
period, while innovational ones obtain for ¿ i = ½i and their effect on yt follows the same

9



dynamics as the effect of the innovations "t: For asymptotic arguments, however, the different

transition is of little relevance. What may matter more is that an innovational outlier (level

shift) for ½ < 1 becomes, as ½ approaches 1, an additive level shift (trend break). To the

contrary, the order of integratedness of additive components does not change with ½ since they

remain outliers or level shifts independently of whether ½ is 1 or below 1. In the following

examples ½ will be fixed and innovational components will not be allowed to mutate, i.e. this

aspect is also irrelevant. Thus the results for the additive and the innovational specification

will only differ by the values of ¿ i; which parameterize them.

Following Doornik et al. [3], a condition for a jump component not to influence the null

asymptotic distribution of the Dickey-Fuller (DF) statistic is that T−
1
2
PT

t=1 componentt → 0:

This condition is fulfilled by temporary change components since
PT

t=1

Pt−i
i=0 ¿ i±t−i = OP (1) by

(1) in corollary 5. Nevertheless, temporary change components affect finite-sample distribu-

tions when
PT

t=1 componentt is big relative to
√
T : In order to proxy this influence in the limit,

I will consider jump components specified as
√
T
Pt−i

i=0 ¿ i±t−i and will call them asymptotically

big. The alternative specification
Pt−i

i=0 ¿ i±t−i will be referred to as asymptotically small.

3.1 Example 1. Power of the DF test applied to a stable process with level

shifts

Perron [8] shows that for an AR(1) process with a single level shift the OLS estimate of the

autoregressive coefficient asymptotically overestimates the true parameter if the level shift is

not accounted for, and thus induces a loss in the power of certain unit root tests. Here I address

the same issue for an AR(1) process with stochastic level shifts and compare the results. The

specification is the following:

yt = ½
ty0 +

t−1X
i=0

½i"t−i +
t−1X
i=0

¿ i¹t−i:

To test the hypothesis ½ = 1 against ½ < 1; the autoregression yt = c+½yt−1+ut can be estimated

by OLS ignoring the presence of jumps, and a test based on T (½̂− 1) can be conducted.
Product moments converge as follows:

T−1
P
y2t−1

w→ ¾2
¡
1− ½2¢−1+¿ (1)2 R J2 by applying a LLN together with corollary 5 (f), (g);

T−1
P
ytyt−1

w→ ½¾2
¡
1− ½2¢−1 + ¿ (1)2 R J2 by applying the same statements;
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T−1
P
yt

w→ ¿ (1)
R
J by a LLN and (1) in corollary 5, combined with the continuous mapping

theorem.

Thus

½̂ =
T
P
ytyt−1 −

P
yt
P
yt−1

T
P
y2t−1 − (

P
yt−1)

2

w→
½¾2

1−½2 + ¿ (1)
2
hR
J2 − ¡R J¢2i

¾2

1−½2 + ¿ (1)
2
hR
J2 − ¡R J¢2i : (2)

This limit is smaller than 1, and therefore a test based on T (½̂− 1) is consistent. However, ifR
J2 − ¡R J¢2 > 0; the limit is also greater than ½ and, in finite samples, power is likely to be

lost when ½ is overestimated.

These are qualitatively the same conclusions as those in [8]. Now I proceed by showing that

Perron’s quantitative conclusions follow from above too.

First, in his model the level shift is additive and hence ¿(1) = 1: Second, he assumes a single

level shift of size ° with relative position ¸ in the sample. By claim 6, the limit of ½̂ under this

condition can be obtained by conditioning in the limit (2). This yieldsZ
J2 −

µZ
J

¶2
=

Z 1

¸

°2 −
µZ 1

¸

°

¶2
= (1− ¸) °2 − [(1− ¸) °]2 = ¸ (1− ¸) °2:

Finally, he denotes ½¾2

1−½2 by ½1; and
¾2

1−½2 by ¾
2
e; so that the limit of ½̂ becomes

½1+¸(1−¸)°2
¾2e+¸(1−¸)°2 : This

is exactly Perron’s expression.

3.2 Example 2. Size of the DF test applied to an I (1) process with tempo-

rary change outliers

FH demonstrate that the presence of temporary change outliers, ”provided that they are

sufficiently large or sufficiently frequent”, may lead to overrejection of the correct unit root

null. In both cases the danger is not that the outliers will not be found, but that they will

be mismodelled as regular mean reverting observations. As already discussed, the outliers of

FH are asymptotically frequent in the sense that their average number increases at the same

rate as the sample size. Here I will show that asymptotically rare outliers, i.e. with expected

number independent of the sample size, have the same effect as the frequent ones, provided

that their size is specified as a fraction of
√
T :

The variable yt is assumed to follow

yt = y0 +
t−1X
i=0

"t +
√
T
t−1X
i=0

¿ i±t−i;

11



and again the autoregression yt = ½yt−1 + ut is estimated and a DF unit root test based on

the t-statistics of ½̂ is conducted. It holds T−2
P
y2t−1

w→ R
W 2 and T−1

P
yt−1∆yt

w→ R
WdW +P∞

i=0 ¿ i∆¿ i+1 [J; J ]1 (by corollary 5 (a) among others); so that

T (½̂− 1) w→
R
WdWR
W 2

+
∞X
i=0

¿ i∆¿ i+1
[J; J ]1R
W 2

:

Hence ½̂ is still superconsistent but the distribution of T (½̂− 1) is shifted due to the jumps
and a unit root test based on the percentiles of

R
WdW

£R
W 2

¤−1
will asymptotically have the

wrong size. The direction of the size distortion (over or underrejection) will depend on the

sign of
P∞

i=0 ¿ i∆¿ i+1; which is seen to be negative:

∞X
i=0

¿ i¿ i+1 −
∞X
i=0

¿2i ≤
Ã ∞X
i=0

¿2i

! 1
2
Ã ∞X
i=0

¿2i+1

! 1
2

−
∞X
i=0

¿2i < 0

for ¿0 6= 0: Therefore, the unit root test will overreject, as in the case of additive outliers ana-
lyzed by FH. In that case the limit distribution of T (½̂− 1) specializes to©R
WdW − [J; J ]1

ª©R
W 2
ª−1

; which, compared to the distribution of FH,©R
WdW −E [J; J ]1

ª©R
W 2
ª−1

; has higher variance.

Since

¾̂2 = T−1
X

(∆yt − (½̂− 1) yt−1)2 = T−1
X
∆y2t + op (1)

w→ ¾2 +

(
¿20 +

∞X
i=1

∆¿2i

)
[J; J ]1 ;

it follows that

t½̂ = (½̂− 1)
¡P

y2t−1
¢ 1
2

¾̂
w→

R
WdW +

P∞
i=0 ¿ i∆¿ i+1 [J; J ]1¡R

W 2
¢ 1
2 (¾2 + {¿20 +

P∞
i=1∆¿

2
i } [J; J ]1)

1
2

:

Again, a comparison with the quantiles of
R
WdW

£
¾2
R
W 2

¤− 1
2 will lead to overrejection of the

unit root null. In the additive outlier case the difference from the limit distribution of FH is,

as before, that in their result [J; J ]1 is replaced by its expectation.

3.3 Example 3. Local-to-unity asymptotics

The final example is of a continuous-time jump-diffusion that occurs as the weak limit of

an AR(1) process with local-to-unity autoregressive root and asymptotically big innovational

outliers. The specification is

∆yt =

µ
1− ¯

T

¶
yt−1 + "t +

√
T±Tt; t = 1; :::; T;

12



and y0 is assumed fixed. Then

T−
1
2 y[Tu] =

[Tu]X
i=1

µ
1− ¯

T

¶[Tu]−i ·
"i√
T
+ ±Ti

¸
+ T−

1
2

µ
1− ¯

T

¶[Tu]
y0

=

Z u

0

µ
1− ¯

T

¶[Tu]−[Ts−]−1
d

[T s]X
t=1

·
"i√
T
+ ±T i

¸
+ o (1) :

Since
³
1− ¯

T

´[Tu]−[Ts−]−1
= e−¯(u−s) + o (1) uniformly in u; s ∈ [0; 1] ; it follows that

T−
1
2 y[Tu] =

Z u

0

e−¯(u−s)d
[Ts]X
j=1

·
"i√
T
+ ±Ti

¸
+ oP (1) :

Next, the integral d
P[T s]

j=1
"i√
T
converges weakly to an integral dW; as can be seen, for ex-

ample, by partial integration, and the integral d
P[Ts]
j=1 ±Ti converges weakly to an integral

dJ by Theorem 2.7 in [6] (see its conditions in the proof of corollary 10): Thus T−
1
2 y[Tu]

w→R u
0 e
−¯(u−s)d (W (s) + J (s)) ; a jump-diffusion satisfying the SDE

dX = −¯Xdt+ dW + dJ

with the initial condition X (0) = 0: It can be viewed as an Ornstein-Uhlenbeck process with

innovational outliers.

4 Conclusions

An apparatus for the asymptotic analysis of econometric models with stochastically specified

outliers and structural breaks was developed. The asymptotic distributions of statistics related

to discrete-time processes with autoregressive and jump components turn out to be functionals

of continuous-time jump-diffusions. The results are consistent with the deterministic formula-

tion of outliers and structural breaks with fixed relative position in the sample.

5 Proofs and intermediate results

5.1 Proofs of the main functional limit statements

Let

Λ = {¸ : [0; 1]→ [0; 1] : ¸(0) = 0; ¸(1) = 1; ¸ strictly increasing and continuous} ;

13



and let

k¸k = sup
0≤t<s≤1

¯̄̄̄
¸(t)− ¸(s)
t− s

¯̄̄̄
:

The Skorohod metric in k dimensions on the space of cadlag functions is defined by

dBk(x; y) = inf

(
" > 0 : ∃¸ ∈ Λ s.t. k¸k ≤ "; max

i
sup
t∈[0;1]

|xi(¸(t))− yi(t)| ≤ "
)
: (3)

The resulting metric space was denoted by DRk [0; 1] :

A different metric on the space of cadlag functions is the product metric

d(x; y) = max {dB(xi; yi) : i = 1; :::; k} ;

where the metric in the coordinate spaces is the 1-dimensional Skorohod metric defined by (3)

with k = 1: The resulting metric space will be denoted by Dk[0; 1]; it is complete and separable,

[1]. The topology on DRk [0; 1] is strictly finer than the topology on D
k [0; 1], but the open balls

w.r.t. d generate the same Borel sigma algebra Dk as dBk does on DRk [0; 1] :

With E standing for either Dk[0; 1] or DRk [0; 1] ; let P (E) be the space of all probability
measures on

¡
E;Dk¢ : It is first proved that the convergence statement of Theorem 3 holds on

P ¡Dk[0; 1]
¢
; and then it is extended to P(DRk [0; 1]). The extension is necessary for obtaining

convergence to certain stochastic integrals later on.

The proof that a sequence belonging to P ¡Dk[0; 1]
¢
converges weakly can be based on the

verification of two properties.

The first one is relative compactness. A sequence {PT } of probability measures is relatively
compact if from each subsequence it is possible to extract a weakly converging subsubsequence.

If all converging subsubsequences have the same weak limit, then it is also the limit of the

original sequence.

In order to demonstrate that this limit is some prespecified probability measure, the concept

of determining class is used. A determining class is a family of Borel sets such that whenever

two probability measures coincide on this family, they are necessarily the same measure. One

determining class of Dk[0; 1] is the family of finite-dimensional sets, which consists of all sets

¼−1t1;:::;tnH, where n ≥ 1; t1; :::; tn ∈ [0; 1]; ¼t1;:::;tn are the natural projections from Dk[0; 1] to Rnk;

and H are Borel sets of Rnk; [2]. This means that two probability measures on (Dk[0; 1];Dk)
whose finite-dimensional distributions coincide, coincide themselves. The space Dk[0; 1] has

smaller determining classes as well, and the determining class to be used in a proof is chosen

14



such that its sets are generated by projections a.s. continuous w.r.t. the hypothesized limiting

measure. Then verifying that the latter is a true limiting measure reduces to verifying that the

finite-dimensional distributions PT¼
−1
t1;:::;tn

; corresponding to the a.s. continuous projections,

converge to its respective finite-dimensional distributions.

Prohorov’s theorem states that on a complete and separable metric space relative compact-

ness is equivalent to tightness: {PT } is tight if for each " > 0 there exists a compact K such

that PT (K) > 1− " for all T . If {PT } is defined on a product space, it is tight if and only if the
sequences of marginal probability measures on the coordinate spaces are tight, [1] p.41. Let a

marginal probability measure satisfy P (i)T (B) = PT (XT ∈ B) for every Borel set B ∈ D, where
XT is a random element defined on some probability space (ΩT ;BT ;PT ) and with values in
D[0; 1]: Let also the finite-dimensional distributions of P (i)T converge to those of a process a.s.

left continuous at 1. Then a sufficient condition for P (i)T to be tight is that for some constant

A it holds that

ET
©
(XT (u)−XT (u1))2(XT (u2)−XT (u))2

ª ≤ A(u2 − u1)2; u1 ≤ u ≤ u2; (4)

[1] Th. 15.6.

Lemma 8 The convergence statement in theorem 3 holds on P ¡Dk [0; 1]
¢
:

Proof. The scheme outlined above is followed. Both the compound Poisson and the

Wiener processes are a.s. left continuous at 1. Tightness of the vector sequence reduces to

tightness of the component sequences. It is ensured by condition (4) for the case k = 1.

Convergence of the finite-dimensional distributions follows since, first, for all x ∈ Rk and u1; u2 ∈
[0; 1]; x0 (¹T (u2)− ¹T (u1)) w→ x0(J(u2)−J(u1)); as can be shown by considering the characteristic
function: Second, by the Cramer-Wold device, this implies ¹T (u2)−¹T (u1) w→ J(u2)−J(u1) for
every u1; u2 ∈ [0; 1]: Finally, since the process considered has independent increments, conver-
gence of all finite-dimensional distributions follows ([5], p.11, lemma 1.3).

The extension to P(DRk [0; 1]) is prepared next.
Let SRk [0; 1] be the set of all k-dimensional vectors whose components are step cadlag func-

tions defined on [0; 1] ; and (i) each has no more than a finite number of jumps, (ii) none of

them jumps at 1, and (iii) at each point in (0; 1) at most one of them has a jump. This set is

interesting because of
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Remark 9 a. P (J ∈ SRk [0; 1]) = 1; i.e. SRk [0; 1] supports the probability measure generated by J;
b. If fn ∈ Dk [0; 1] and fn → f ∈ SRk [0; 1] in the product Skorohod topology, then for each u ∈ (0; 1]

there exists a sequence un such that ∆fn (un)→ ∆f (u) : Here ∆f (u) := f(u)− f(u−):

The first part follows from the independence of the Poisson processes governing the com-

ponents of J (u).

As to the second part, if only the component f (j) is discontinuous at u; set i = j; if all

components are continuous at u; set i = 1: By the definition of SRk [0; 1] there are no other

possibilities. By proposition 2.1 in [5], Vol. 1, Chapter 6, the convergence f(i)n → f(i) in D [0; 1]

implies the existence of a sequence un such that ∆f
(i)
n (un) → ∆f (i) (u) : However the same

convergence also holds for the other components of f , since they are constant in a neighborhood

of u and convergence to them is uniform on that neighborhood. Thus the remark is correct.

This remark is the basis of the next proof.

Proof of theorem 3. Thanks to the continuous mapping theorem (Theorem 5.1 in [1]) and

to remark 9 (a), the convergence in lemma 8 can be extended from P ¡Dk [0; 1]
¢
to P(DRk [0; 1]) if

the identity id : Dk[0; 1]→ DRk [0; 1] is continuous on SRk [0; 1]: This means that the convergence

fn → f ∈ SRk [0; 1] in the product topology should imply the same convergence in the topology
of DRk [0; 1] : Indeed, remark 9 (b) ensures that the conditions of proposition 2.2b in [5], Vol.

1, Chapter 6, are satisfied, and so the desired implication is true.

Proof of claim 4. By Donsker’s invariance principle, T−
1
2

P[Tu]
t=1 "t

w→ W (u) on DRp [0; 1] :

Since DRp+k [0; 1] is separable,
³

1√
T

P[Tu]
t=1 "

0
t; ¹T (u)

0´0 and (W (u)0; J(u)0)0 are random elements

of DRp+k [0; 1], [1] p.225: Due to the assumed independence, the convergences stated by Theo-

rem 3 and by Donsker’s invariance principle are joint, [1] p.26, i.e.
³

1√
T

P[Tu]
t=1 "

0
t; ¹T (u)

0´0 w→
(W (u)0; J(u)0)0 in the topology of DRp+k [0; 1]: This proves the claim for A = I:

For an arbitrary A; the functional (x→ Ax): SRp+k [0; 1]→ DRn [0; 1] is continuous by remark

9 (b) and proposition 2.2b in [5], Vol. 1, Chapter 6, implying the validity of the claim.

5.2 Corollaries to functional Poisson convergence

A special case of corollary 5 is proved first.

Corollary 10 Under the assumptions of the FPCT, the following converge jointly:

16



a.
PT

t=1 ¹Tt−1±
0
Tt

w→ R
J(dJ)0;

b. T−
1
2
PT

t=1

³Pt−1
i=1 "i

´
±0Tt

w→ R
W (dJ)0;

c.
P[Tu]

t=1 ±Tt±
0
Tt

w→ [J; J ]u
a:s:
= 1

2
diag(J21 (u)−

R u
0
J1dJ1; :::; J

2
k(u)−

R u
0
JkdJk);

d. T−1
PT

t=1 ¹Tt¹
0
Tt

w→ R
JJ 0;

e. T−2
PT

t=1

³Pt−1
i=1 ¹Ti

´
¹0Tt

w→ R
Jc J 0;

f. T−3
PT

t=1

³Pt
i=1 ¹Ti

´³Pt
i=1 ¹Ti

´0 w→ R
Jc Jc0;

g. T−
1
2
PT

t=1 ¹Tt"
0
t
w→ J(1)W (1)0 − R (dJ)W 0 =

R
J(dW )0;

h. T−
3
2
PT

t=1

³Pt−1
i=1 "i

´
¹0Tt

w→ R
WJ 0;

i. T−
3
2
PT

t=1

³Pt−1
i=1 ¹Ti

´
"0t

w→ Jc(1)W (1)0 − R JW 0 =
R
Jc(dW )0:

Proof of corollary 10. Theorem 2.7 in [6] provides a sufficient condition for conver-

gence of integrals whose integrators are constant except for finitely many discontinuities (here

¹T (u)). First, it requires that the sequence
PT
t=1 ¼t; counting the jumps of ¹T ; be stochasti-

cally bounded. Since this sequence converges in distribution, the requirement is fulfilled. The

second condition is convergence in the Skorohod topology, and in the present context it re-

duces to
³
T−

1
2
P[Tu]

t=1 "
0
t; ¹T (u)

0
; ¹T (u)

0
; ¹T (u)

0´0 w→ (W (u)0; J(u)0; J(u)0; J(u)0)0 in the topology of

D([0; 1]p+3k). It is implied by claim 4 and the continuity of (x; y)→ (x; y; y; y) from D([0; 1]p+k)

to D([0; 1]p+3k): Therefore it holds thatZ T− 1
2

[Tu−]X
t=1

"t; ¹T (u−)
d¹0T (u) w→

Z
(W;J) dJ 0;

which contains (a) and (b).

(c) follows from

[Tu]X
t=1

(¼Tt · "t) (¼Tt · "t)0 = [¹T ; ¹T ]u = ¹T (u)¹T (u)0 − 2
Z u

0

¹Td¹
0
T

w→ J(u)J(u)0 − 2
Z u

0

JdJ 0 = [J; J ]u

and the latter is a.s. a diagonal matrix since for i 6= j; Ji and Jj a.s. do not have points of

jump in common.

(d), (e) and (f) follow respectively from the continuity of the functionals x→ R 1
0
x(u)x(u)0du; x→R 1

0

R u
0 x(s)dsx(u)

0du and x→ R 1
0

R u
0 x(s)ds

£R u
0 x(s)ds

¤0
du; all from DRk [0; 1] to R

k2 ; and (h) follows

from the continuity of (x; y)→ R 1
0 x(u)y(u)

0du from D([0; 1]2k) to Rk
2

:

(g) follows from the partial summation

TX
t=1

¹t"
0
t = ¹T

TX
t=1

"0t −
TX
t=1

±t

t−1X
i=1

"0i;
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and from (b). Similarly, the partial summation

TX
t=1

Ã
t−1X
i=1

¹i

!
"0t =

TX
t=1

¹t

TX
t=1

"0t −
TX
t=1

¹t

tX
i=1

"0i

and the continuity of the functional (x; y)→ R 1
0 x(u)duy(1)

0 − R 10 x(u)y(u)0du imply (i):
Convergence is joint because the vector functional with components the individual ones, is

continuous.

The proof of corollary 5 makes use of some preliminary results.

Remark 11 (on representation) For µ (z) defined in corollary 5, let µ∗i =
P∞
j=i+1 µj; i = 0; 1; ::: Let

also ®Tt; t ≤ T; be a generic notation for an element of a triangular array. Then
TX
t=1

t−1X
i=0

µi®Tt−i = µ (1)
TX
t=1

®Tt −
t−1X
i=0

µ∗i®Tt−i;

and therefore
Pt−1

i=0 µ
∗
i®Tt−i has the same convergence properties as

Pt−1
i=0 µi®Tt−i:

This follows from

t−1X
i=0

µi®Tt−i =

Ã
t−1X
i=0

µi

!
®Tt −

t−1X
i=0

 t−1X
j=i+1

µj

∆®Tt−i
=

¡
µ (1)− µ∗t−1

¢
®Tt −

t−1X
i=0

¡
µ∗i − µ∗t−1

¢
∆®Tt−i = µ (1)®Tt −

t−1X
i=0

µ∗i∆®Tt−i

by summation over t. Since −µ∗i are the coefficients of the power series of the function
(µ(z)− µ(1)) =(z − 1); which satisfies the same convergence hypothesis as µ (z) ; Pt−1

i=0 µ
∗
i®Tt−i

has the same convergence properties as
Pt−1

i=0 µi®Tt−i:

Remark 12 Under the assumptions of the FPCT it holds:

a. if »t are serially uncorrelated random vectors with common VCM Σ» <∞;
√
T
Pt−1

i=0 µi¼Tt−i ·»t−i
are L2− bounded uniformly in T and t ≤ T ;
b2 .

PT
t=1 ¸T tÃ

0
t are L2−bounded uniformly in T and t ≤ T ;

c.
PT

t=1(2)

P
0≤i<j≤t−1 µi±Tt−i±

0
Tt−jÁ

0
j = oP (1) :

2 In fact,
PT
t=1 ¸t´

0
t converges to a distribution. For example, if n = 1; Ã (z) = 1 and ¿ (z) = 1; claim 1 implies thatPT

t=1 ¼t ("2t"1t)
w→ PN(r)

i=1 &i , where &i ∼ Nid(0; ¾21¾
2
2): A derivation for the general case requires a stronger statement

than claim 1. For future reference it will be sufficient to have (b) as in the remark.
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Proof. Since
P∞

j=0 kµjk2 < ∞ and T kV ar (¼T · · »·)k → const (due to Tp(i)1;T → κi; i = 1; :::; k),

it holds that °°°°°V ar
Ã√

T
t−1X
i=0

µi¼Tt−i · »t−i
!°°°°° ≤ T kV ar (¼T · · »·)k

tX
j=0

kµjk2 → const;

which confirms (a).

(b) can be approached similarly. It holds that
PT

t=1 ¸TtÃ
0
t =

PT
t=1

PT−t
i=0 µi±TtÃ

0
t+i; and hence

vec

Ã
TX
t=1

¸tÃ
0
t

!
=

TX
t=1

Ã
T−tX
i=0

Ãt+i ⊗ µi
!
±Tt;

as vec (±Tt) = ±Tt: Denote ATt =
PT−t

i=0 Ãt+i ⊗ µi: Then, by the convergence assumptions on ¿
and µ; E (AT t ⊗ATt) = O(1): By the serial independence of ±Tt;

V ar

(Ã
TX
t=1

¸tÃ
0
t

!v)
=

TX
t=1

V ar (ATt±Tt) ;

and by the independence of ±Tt and "s;"
V ar

(Ã
TX
t=1

¸tÃ
0
t

!v)#v
=

"
TX
t=1

E (ATt ⊗ATt)
#
[V ar±T ]

v
=

"
TX
t=1

O(1)

#
O(T−1) = O(1):

Statement (c) is proved using the definition of convergence in probability. Fix ´; ± > 0: Let

T0 be an integer to be fixed later but arbitrary at the moment, and let T > T0: Let k:k denote
the max matrix norm. Then

P

°°°°°°
TX
t=2

X
0≤i<j≤t−1

µi±Tt−i±0Tt−jÁ
0
j

°°°°°° > ´
 ≤

P

°°°°°°
TX
t=2

t−2X
i=0

T0−1X
j=i+1

µi±Tt−i±0Tt−jÁ
0
j

°°°°°° > ´

2


| {z }

p1

+ P

°°°°°°
TX
t=2

t−2X
i=0

t−1X
j=(i+1)∨T0

µi±Tt−i±0Tt−jÁ
0
j

°°°°°° > ´

2


| {z }

p2

:

In its turn,

p1 ≤
TX
t=2

P

°°°°°°
t−2X
i=0

T0−1X
j=i+1

µi±T t−i±0Tt−jÁ
0
j

°°°°°° 6= 0
 :

The upper limit for the sum in i is effectively T0 − 2; since for bigger values of i the sum
in j is empty. The realization of each of the events indexed by t implies that at least two

different vectors among ¼t−T0+1; :::; ¼t are nonzero. Let ΠTt = max
i=1;:::;k

¼
(i)
Tt; it holds P (ΠTt = 1) =

P (ΠT1 6= 0) = O
¡
T−1

¢
: Thus

p1 ≤
TX
t=2

t−1X
s=t−T0+1

tX
u=s+1

P (¼Ts 6= 0 & ¼Tu 6= 0) = (T − 1)T0(T0 − 1)
2

[P (ΠT1 6= 0)]2 = T0(T0 − 1)
2

O
¡
T−1

¢
:
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The other addend satisfies

p2 ≤ P
 TX
t=2

t−2X
i=0

kµi±Tt−ik
t−1X

j=(i+1)∨T0

°°Áj´t−j°° > ´

2

 ≤ P
 ∞X
j=T0

°°Áj°°°°´t−j°° TX
t=1

t−1X
i=0

kµik k±Tt−ik > ´

2

 :
Since

P∞
j=T0

°°Áj°°°°´t−j°° is the tail ofP∞j=0 °°Áj°°°°´t−j°° <∞ a.s.; it follows thatP∞j=T0 °°Áj°°°°´t−j°° =
oP (1) as T0 → ∞: Consider now the second factor in the parentheses. It holds by remark 11
that

TX
t=1

t−1X
i=0

kµik k±Tt−ik =
Ã ∞X
i=0

kµik
!

TX
t=1

k±Ttk−
T−1X
i=0

 ∞X
j=i+1

kµik
k±TT−ik :

With Ωt = max
i=1;:::;k

¯̄̄
"
(i)
t

¯̄̄
;

TX
t=1

k±Ttk ≤
TX
t=1

ΠTt (Ωt − EΩ1) +EΩ1
TX
t=1

ΠTt = OP (1)

by the FPCT and by usual Poisson convergence, and

T−1X
i=0

 ∞X
j=i+1

kµik
k±TT−ik ≤ T−1X

i=0

 ∞X
j=i+1

kµik
ΠT tΩt = oP (1)

by remark 12 (a). Hence
PT
t=1

Pt−1
i=0 kµik k±Tt−ik = OP (1) : Summarizing,

p2 ≤ P
³
oP (1)OP (1) >

´

2

´
as T0 →∞:

Thus T0 can be chosen such that p2 ≤ ±
2 and independent of T: Choose and fix such a T0:

Next T1 > T0 can be found such that p1 ≤ T0(T0−1)
2 O

¡
T−1

¢
< ±

2 for T > T1: Therefore, for

T > T1;

P

°°°°°°
TX
t=2

X
0≤i<j≤t−1

µi±Tt−i±0Tt−jÁ
0
j

°°°°°° > ´
 ≤ ±

2
+
±

2
;

which completes the proof of (c).

Proof of corollary 5. Let t ≤ T: Subsuming the index T; by remark 11 it holds that

ºt =
tX
i=1

¸i = µ (1)¹t −
Xt−1

i=0
µ∗i ±t−i = µ (1) ¹t − ¸∗t ;

where ¸∗t satisfies the same assumption as ¸t does; and is in particular oP (1) by remark 12 (a).

By the FPCT and Th. 4.1 in [1], º [Tu]
w→ µ(1)J(u): Analogously °[Tu]

w→ Á(1)J(u):

The result T−
1
2
P[Tu]

t=1 Ãt
w→ ¿(1)W (u) is known from e.g. [6].

The three convergences are joint in D([0; 1]2k+p) similarly to claim 4.
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To show (a), start from

TX
t=1

¸t!
0
t =

TX
t=1


t−1X
i=0

µi±t−i±0t−iÁ
0
i + 2

X
0≤i<j≤t−1

µi±t−i±0t−jÁ
0
j

 =
TX
t=1

t−1X
i=0

µi±t−i±0t−iÁ
0
i + oP (1) ;

which follows from remark 12 (c).

Thus,

vec

Ã
TX
t=1

¸t!
0
t

!
=

TX
t=1

t−1X
i=0

(Ái ⊗ µi) vec
¡
±T−i±0T−i

¢
=
∞X
i=0

(Ái ⊗ µi) vec
Ã

TX
t=1

±t±
0
t

!
−
T−1X
t=0

" ∞X
i=t+1

(Ái ⊗ µi)
#
vec

¡
±T−t±0T−t

¢
+ oP (1):

From here (a) follows by corollary 10 (c) applied to the first addend, since the second one is

oP (1) : Indeed,°°°°°
T−1X
t=0

" ∞X
i=t+1

(Ái ⊗ µi)
#
vec

¡
±T−t±0T−t

¢°°°°° ≤
T−1X
t=0

Ã ∞X
i=t+1

kÁikkµik
!
k±T−tk2

≤
T−1X
t=0

Ã ∞X
i=t+1

kÁikkµik
!
ΠTtΩ

2
t

and if ´t have finite fourth moments, convergence to 0 follows from remark 12 (a). More

generally it follows from a consideration of the characteristic function.

The LHS of (b) can be written as
PT

t=1 ºt!
0
t = µ(1)

PT
t=1 ¹t!

0
t−
PT

t=1 ¸
∗
t!

0
t; and the asymptotic

distribution of the two addends can be established separately.

Summing partially gives

TX
t=1

¹t!
0
t = ¹T

TX
t=1

!0t −
TX
t=1

±t

t−1X
i=1

!0i = ¹T°T −
TX
t=1

±t°t−1

= ¹T¹
0
TÁ(1)

0 − ¹T!∗0T −
TX
t=1

±t¹
0
t−1Á(1)

0 +
TX
t=1

±t!
∗0
t−1;

where !∗t is defined analogously to ¸
∗
t : Then by the FPCT, remark 12 (a), corollary 10 (a)

and corollary 5 (a) applied in this order to the respective members of the above expression, it

follows that
PT

t=1 ¹t!
0
t
w→ £
J(1)J(1)0 − R (dJ)J 0¤Á(1)0.

For
PT

t=1 ¸
∗
t!

0
t, corollary 5 (a) implies vec

³PT
t=1 ¸

∗
t!

0
t

´
w→ P∞

i=0

P∞
j=i+1 (Ái ⊗ µj) vec [J; J ]1 ;

which completes the proof of the first line in (b).

To obtain the expression in the second line, J(1)J(1)0 − R (dJ)J 0 should be substituted by
[J; J ]1 +

R
J (dJ)0 ; and then µ (1) [J; J ]1 Á (1)

0 −P∞i=0P∞j=i+1 µj [J; J ]1 Á0i by P∞i=0Pi
j=0 µj [J; J ]1 Á

0
i:
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Statement (c) follows from T−
1
2
PT

t=1 ºt−1"
0
t = T

− 1
2 µ(1)

PT
t=1 ¹t−1"

0
t+T

− 1
2
PT

t=1 ¸
∗
t "
0
t by apply-

ing corollary 10 (g) to the first term and remark 12 (b) to the second one.

To prove (d), note that by remark 11

T−
1
2

TX
t=1

Ã
t−1X
i=1

Ãi

!
¸0t = ¿ (1)T

− 1
2

TX
t=1

Ã
t−1X
i=1

"i

!
¸0t − T−

1
2

TX
t=1

Ã∗t−1¸
0
t;

and by remark 12 (b) T−
1
2
PT
t=1 Ã

∗
t−1¸

0
t = oP (1) : Next, from the partial summation

T−
1
2

TX
t=1

Ã
t−1X
i=1

"i

!
¸0t = T−

1
2

TX
i=1

"t

Ã
TX
i=1

¸t

!0
− T−1

2

TX
t=1

"t

Ã
tX
i=1

¸i

!0

= T−
1
2

TX
i=1

"t¹
0
T µ (1)

0
+ T−

1
2

TX
i=1

"t¸
∗
t − T−

1
2

TX
t=1

"tº
0
t;

(d) obtains by applying (1) to the first term, remark 12 (b) to the second term, and corollary

5 (c) to the last one.

Statements (e), (f), (g), (h), (i) and (j) follow from (1) and the continuity of functionals of

obvious choice (where applicable, integrals d
P [Tu]

t=1 "t√
T

after integration by parts are transformed

into integrals d¹T (u) ; whose convergence was discussed in the proof of the previous corollary).

Proof of claim 6. The notation P (G ∈ (:)) is used for the probability measure corresponding
to a random element G: The sign

d
= between two random elements denotes that these generate

the same probability measure. The same notation is applied to conditional measures.

a. Convergence conditionally on a known number of jumps between certain dates.

The distribution of {n (si)− n (si−1)}ki=1 is a distribution on the discrete set Nk: Hence the sets
{n (si)− n (si−1) = li} ; being simultaneously open and closed, have empty boundaries and are
thus continuity sets of P (n (si)− n (si−1) ∈ (:)) : Let B be a continuity set of P (J ∈ (:) |E (N)) ;
so that P (J ∈ @B|E (N)) = 0: Since @ {li} = Á; it holds that

@

µ
B ×

kQ
i=1

{li}
¶
⊂ @B ×

kQ
i=1

{li} ∪B ×
kQ
i=1

@ {li} = @B ×
kQ
i=1

{li} :

Then, introducing the notation ~∆n = (n (s2)− n (s1) ; :::; n (sk)− n (sk−1)) ; it follows that

P

µ
(J; ~∆N) ∈ @

µ
B ×

kQ
i=1

{li}
¶¶
≤ P (J ∈ @B|E (N))P (E (N)) ;

which is zero by the choice of B: Therefore the probability on the LHS is zero, i.e. B×Qk
i=1 {li}

is a continuity set of P
³
(J; ~∆N) ∈ (:)

´
: By the continuous mapping theorem, ¹T (u)

w→ J (u)
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implies
³
¹T ; ~∆NT

´
w→
³
J; ~∆N

´
: Therefore,

P

µ³
¹T ;

~∆NT

´
∈ B ×

kQ
i=1
{li}

¶
→ P

µ³
J; ~∆N

´
∈ B ×

kQ
i=1
{li}

¶
:

Furthermore,

P (¹T ∈ B |E (NT )) =
P
³³
¹T ; ~∆NT

´
∈ B ×Qk

i=1 {li}
´

P (E (NT ))
→
P
³³
J; ~∆N

´
∈ B ×Qk

i=1 {li}
´

P (E (N))

= P (J ∈ B|E (N)) ;

which by the arbitrariness of B shows that

¹T (u) |E (NT ) w→ J (u) |E (N) : (5)

b1. Convergence conditionally on known jump dates. Let jumps be known to occur at

relative times ui; 0 < u1 < u2 < ::: < um < 1; and at no other dates. Then, in D [0; 1] ;

mT;! (u) =
X

i:[Tui]≤[Tu]
´i (!) −→

T→∞

X
i:ui≤u

´i (!)

for all ! in the sample space on which ´i are defined.
3 Next, for big T any interval of length

1
T
contains at most one jump point ui; so that

mT (u)
d
= ¹T (u) |{¼t = I {t = [Tui] for some i ∈ 1; ::;m} ; t = 1; :::; T} :

It also holds that
P
i:ui≤u ´i

d
= J (u) |N (with conditioning on a sample path of N with jumps

at and only at ui): Then

mT (u)
w−→ J (u) |N:

b. Convergence conditionally on partially known jump dates. As above, let jumps be

known to occur at relative times u1 < u2 < ::: < um; but let the possibility of other jumps not

be precluded (condition C): Under this condition,

¹T (u) |C (NT ) d
=

[Tu]X
t=1

±t −
X

t=[Tui]≤[Tu]
±t +

X
t=[Tui]≤[Tu]

´t;

where the uncertain jumps at relative times ui have been subtracted from the first sum on the

RHS and have been replaced by certain jumps. Since
°°°Pt=[Tui]≤[Tu] ±t

°°° ≤Pk
i=1

°°±[Tui]°° = oP (1) ;
it holds that

[Tu]X
t=1

±t −
X

t=[Tui]≤[Tu]
±t =

[Tu]X
t=1

±t + oP (1)
w→ J (u)

3 This holds in spite of the fact that the difference mT;! (u) −
P
i:ui≤u #i (!) =

P
i:u<ui<([Tu]+1)=T

#i (!) fails to

converge to 0 in D [0; 1] (the latter is not a topological vector space).
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by applying FPCT to the first term. By the argument in (b1), it holds further that

X
t=[Tui]≤[Tu]

´t
w→
X
ui<u

´i
d
=
X
ui<u

´N(1)+i:

The latter distribution does not depend on N (1), the inclusion of N (1) in the subscript is only

a notational device for indicating that the jump sizes of J and those of the certain jumps are

independent.

Next, the processes
P[Tu]
t=1 ±t−

P
t=[Tui]≤[Tu] ±t and

P
t=[Tui]≤[Tu] ´t are independent, and there-

fore their weak convergence is joint on D2 [0; 1]. The limiting processes almost surely have no

jump points in common, so that the mapping (x; y) → x + y is continuous on a support of³P[Tu]
t=1 ±t −

P
t=[Tui]≤[Tu] ±t;

P
t=[Tui]≤[Tu] ´t

´
: Hence

¹T (u) |C (NT ) w→ J (u) +
X
ui<u

´N(1)+i:

It remains to show that J (u) |C (N) d= J (u)+Pui<u
´N(1)+i: Introduce u0 = 0; and for a u ∈ [0; 1]

let ju be the maximal index such that uj ≤ u: Then

J (u) |C (N) d=
juX
i=1

(J (ui−)− J (ui−1)) |C (N) + (J (u)− J (uju)) |C (N) +
juX
i=1

∆J (ui) |C (N) ;

where the probability measures corresponding to the separate addends are independent. Since

J (u)− J (uj) and J (ui−)− J (ui−1) are independent of ∆J (ui) ; it follows that

(J (u)− J (uj)) |C (N) d
= J (u)− J (uj)

and

(J (ui−)− J (ui−1)) |C (N) d= J (ui−)− J (ui−1) d= J (ui)− J (ui−1) :

The last equality of distributions is true because the unconditional probability for a jump at

at least one ui is zero. Thus,

J (u) |C (N) d=
jX
i=1

(J (ui)− J (ui−1)) + J (u)− J (uj) +
jX
i=1

∆J (ui) |C (N) d= J (u) +
X
ui<u

´N(1)+i;

so that

¹T (u) |C (NT ) w→ J (u) |C (N) :
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c. Convergence conditionally both on known number of jumps between certain dates

and on partially known jump dates. As in (b1), start from

¹T (u) |E (NT )&C (NT ) d
=

[Tu]X
t=1

±t −
X

t=[Tui]≤[Tu]
±t +

X
i:[Tui]≤[Tu]

´T+i

¯̄̄̄¯̄E (NT )&C (NT )
d
=

[Tu]X
t=1

±t −
X

t=[Tui]≤[Tu]
±t

¯̄̄̄¯̄E (NT )&C (NT ) + X
i:[Tui]≤[Tu]

´T+i

¯̄̄̄
¯̄E (NT )&C (NT ) ;

where the measures corresponding to the two addends are independent. Eliminating, by inde-

pendence, irrelevant conditions, allows us to simplify the above distribution to that of[Tu]X
t=1

±t −
X

t=[Tui]≤[Tu]
±t

¯̄̄̄¯̄ Ẽ (NT ) + X
i:[Tui]≤[Tu]

´T+i;

where Ẽ (NT ) is the condition NT (si)−NT (si−1) = li − |{uj : si−1 < uj ≤ si}| : The distribution
can finally be written as

[Tu]X
t=1

±t

¯̄̄̄
¯̄ Ẽ (NT ) + X

i:[Tui]≤[Tu]
´T+i + oP (1) ;

again with the first two addends independent. From above, using the result from (a) for the

convergence of
P[Tu]
t=1 ±t

¯̄̄
Ẽ (NT ) ; by the same argument as in (b1), it follows that

¹T (u) |E (NT )&C (NT ) w→ J (u) |Ẽ (N) +
X
ui<u

´N(1)+i
d
= J (u) |E (N)&C (N) :

Hence,

¹T (u) |E (NT )&C (NT ) w→ J (u) |E (N)&C (N) :

Corollary. Let f : DRk [0; 1]→ R be an arbitrary bounded continuous functional. The FPCT

can be rewritten as

P (N (1) = 0)

Z
fdP (J ∈ (·) |N (1) = 0) + P (N (1) > 0)

Z
fdP (J ∈ (·) |N (1) > 0) (6)

=

Z
fdP (J ∈ (·)) ←

T→∞

Z
fdPT (¹T ∈ (·))

= P (NT (1) = 0)

Z
fdP (¹T ∈ (·) |NT (1) = 0) + P (NT (1) > 0)

Z
fdP (¹T ∈ (·) |NT (1) > 0) :

By the law of rare events for Bernoulli rv’s, P (NT (1) = 0)→ P (N (1) = 0) and P (NT (1) > 0)→
P (N (1) > 0) 6= 0:By P (¹T ∈ (·) |NT (1) = 0) w→ P (J ∈ (·) |N (1) = 0), it holds R fdP (¹T ∈ (·) |NT (1) = 0)→R
fdP (J ∈ (·) |N (1) = 0) : Thus, three terms on the RHS of (6) converge to their counter-

parts on the LHS, and so the fourth term must also converge:
R
fdP (¹T ∈ (·) |NT (1) > 0) →R

fdP (J ∈ (·) |N (1) > 0), and hence, P (¹T ∈ (·) |NT (1) > 0) w→ P (J ∈ (·) |N (1) > 0) :
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