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Abstract

We investigate learning in a setting where each period a population has to choose

between two actions and the payoff of each action is unknown by the players. The popu-

lation learns according to reinforcement and the environment is non-stationary, meaning

that there is correlation between the payoff of each action today and the payoff of each

action in the past. We show that when players observe realized and foregone payoffs, a

suboptimal mixed strategy is selected. On the other hand, when players only observe

realized payoffs, a unique action, which is optimal if actions perform different enough, is

selected in the long run. When looking for efficient reinforcement learning rules, we find

that it is optimal to disregard the information from foregone payoffs and to learn as if

only realized payoffs were observed.
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1 Introduction

Imagine the simple decision problem in which every period individuals in a population have

to choose between two alternatives. The payoff of these two alternatives is not know by the

players. What is more, the payoff of the alternatives could vary over time according to some

distribution also unknown for the players.

This decision problem is faced by many of us in our everyday lives: whether to buy a PC

or a Mac, whether to have fruit or a cake as a dessert in a restaurant, or whether to watch an

action movie or a romantic movie at the theater. Although oblivious of the payoff we will get

from making these choices, we might have some information that can help in choosing the

better alternative. This information could have been obtained, for instance, from our own

experiences in the past or via word-of-mouth communication.

In this paper we study how the choices made by a population evolve in the setting just

described. The model we present has two major features about how players learn and about

how the payoffs change. First, players learn according to reinforcement, whereby actions that

where successful in the past are more likely to be chosen. Second, the underlying distribution

determining the payoff of each action is non-stationary. This means that the payoff today of

a given action depends on the payoff it yielded in the past. In particular, we consider the

case in which payoffs depend deterministically on the state of nature. The state of nature

changes following a Markov chain. Hence, the probability of being at a given state tomorrow

depends on which state we are in today. Players are ignorant of this fact; they simply observe

that the payoff of available actions changes over time.

In the learning literature, as well as in the economic literature in general, randomness

determining the outcome of certain events or actions is almost always assumed to follow a

stationary i.i.d. process. This assumption is clearly made for the sake of technical simplicity,

as real life phenomena, such as financial markets, gambling, population biology, statistical

mechanics, etc., quite often follow non-stationary processes. To our knowledge, only Ben-

Porath et al. (1993) and Rustichini (1999) deal with the evolutionary properties of models

where nature follows a non-stationary process.

Ben-Porath et al. (1993) present an evolutionary model that is framed within a changing

environment. They study two types of environments: one in which the change is deterministic

and another in which the changes in environment follow a Markov chain. In their model,

players’ actions are subject to random mutations. They characterize the mutation rate that

maximizes population growth in the long run.

Rustichini (1999) presents a paper that focuses on the optimality of two different pop-

ulation dynamics within a Markovian environment. In his model, the environment changes
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according to a Markov chain, and for any state in the chain there is a unique action that

maximizes payoff. Rustichini (1999) studies the optimality properties of linear and exponen-

tial (logit) adjustment process when players have infinite memory. An adjustment process or

learning rule is simply a map between information and strategies. Rustichini (1999) considers

two different informational settings about payoffs of actions. In one of these settings players

observe the performance of all the actions (realized and foregone payoffs are observed), while

in the other they only observe the performance of the action chosen (only realized payoffs are

observed).

As in Rustichini (1999), we consider two informational settings: one in which both realized

and foregone payoffs are observed and another in which only realized payoffs are observed.

There are two main differences between Rustichini’s work and ours. First, we consider a very

general set of learning rules instead of only two specific rules. Second, and most importantly,

in our setting players don’t use the whole history of past payoff realizations. Instead, as pre-

scribed by reinforcement, players learn using the information they have from their most recent

payoff experiences. The reason why we are interested in a setting where players have limited

memory is that empirical and theoretical literature in psychology and economics agrees that

limited memory is a better assumption for modeling human behavior than infinite memory

(see for example, Rubinstein (1998), Hirshleifer and Welch (2002) and Conlisk (1996)).

As already mentioned, the learning rules considered in this paper have the property of

being reinforcing. According to reinforcement learning, actions that were more successful

today are more likely to be adapted for tomorrow. Reinforcement has been found to be

one of the main driving forces of human behavior in repeated decision problems. For some

detailed expositions on reinforcement learning and its relationship with real life behavior the

reader is referred to Roth and Erev (1995), Erev and Roth (1998) and Camerer and Ho

(1999).

When both realized and foregone payoffs are observed, reinforcement is translated into

being more likely to play tomorrow the action that was better today. For this setting, we use

a generalization of the best response behavior that we call the Stochastic Better Response.

Under the Stochastic Better Response, the probability of playing tomorrow a given action

increases if and only if today that action was better than the other one. The magnitude of

the change in probabilities of playing either action depends on the specific functional form

used. The Stochastic Better Response is a very general learning rule that allows players

to respond to the magnitude and not just the ordering of payoffs of each action. Note

that the Stochastic Better Response is a different concept from the Stochastic Better Reply

Dynamics (Josephson (2007)). The Stochastic Better Reply Dynamics are the dynamics for

the evolution of strategies resulting when players use the better response, which is a particular
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case of the Stochastic Better Response.

When foregone payoffs are not observed, players can not directly compare the perfor-

mance of both actions within the same time period. In this case, players reinforce (possibly

negatively) the action they played. How much they reinforce this action will depend on the

payoff achieved. We use a general case of the Cross (1973) learning rule that also generalizes

the rules in Börgers et. al. (2004) (BMS, henceforth). We call this rule the General Rein-

forcement Rule. Note that players could use the General Reinforcement Rule even if they

observe foregone payoffs. While this implies that players are disregarding information, we

will show that it may be optimal to do so.

Under the Cross Learning Rule, players increase the probability of playing the action just

played by the payoff yielded by that action. An interesting result shown by Börgers and Sarin

(1997) is that a population that plays according the Cross Learning Rule exhibits a behavior

that converges to replicator dynamics.

The rules in BMS can incorporate aspiration levels (exogenous or endogenous): in other

words, if the payoff of the action chosen is higher than the aspiration level, then the probability

of playing that action increases for the next period. On the other hand, if the payoff achieved

by the action chosen is smaller than the aspiration level, then the probability of playing that

action decreases for next period. The rules in BMS are linear on payoffs. We relax this by

allowing for any increasing function on realized payoff.

In the case where foregone payoffs are observed, we show that the continuous time limit of

the evolution of strategies converges to a situation where every period every action is played

with a constant probability bounded away from 1. The specific value of the probability by

which each action is played at every period will depend on two things: first, the difference

in payoffs between the two actions and the specific form of Stochastic Better Response used,

and, second, on the probabilities that the limiting distribution of the Markov chain for states

puts on each state. The behavior found in this setting is a generalization to what is know

as probability matching. Under probability matching, if an action is best a fraction x of

the time, then in any given period it is played with probability x. The best reply matching

behavior is clearly suboptimal. While some experimental papers report that this behavior is

observed in real life (see, for example, Rubinstein (2002), Siegel and Goldstein (1959)), there

does not seem to be consensus as to whether probability matching is in fact present in the

behavior of real life agents (see, for instance, Vulkan (2000) and Shanks et. al. (2002)).

The results found in this informational setting are also closely related to the findings by

Kosfeld et. al. (2002). They study a setting where a finite set of players repeatedly play a

normal-form game. Players adapt their strategies by increasing the probability of playing a
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certain action only if this action is a best reply to the actions played by the other agents.

Hence, the rule they use is a particular case of the Stochastic Better Response in which the

magnitude of payoffs is irrelevant for the updating of strategies. Our setting is also different

from theirs in that players do not play against other players but against nature and in that

we consider a general class of rules instead of only one. Kosfeld et. al. (2002) find that the

continuous time limit of the system converges to a best-reply matching equilibrium. In a

best-reply matching equilibrium each player plays an action with a probability that is equal

to the probability that this action is a best response to the actions of the other players. The

probability matching behavior found in this paper for games against nature is the equivalent

to the best-reply matching equilibrium found in Kosfeld et. al. (2002). In Section 5.1 this

issue is discussed in more depth.

In our second informational setting, when foregone payoffs are not observed, we show that

the population may end up playing a suboptimal action. The population surely selects the

action that has higher average payoff only if the difference between the average payoff of the

two actions is high enough. Hence, the system may lock-on to a suboptimal action. In this

respect, our work extends Ellison and Fudenberg (1995) results to a general set of learning

rules and an environment that may not be stationary.

Our results are rounded off by characterizing the efficient rules for both informational

settings. A striking result is that when foregone payoffs are observed, it is optimal to ignore

the extra information conveyed by the payoff of the action not chosen. That is, players are

better off by learning using the General Reinforcement Rule, which only uses the information

of the realized payoff. This is due to the fact that observing foregone payoffs leads players to

adopt the action that is best today but may be not the best in the long run. That is, players

are ”distracted” by observing the performance of all the actions. When foregone payoffs are

not observed, we show that if players use learning rules that diminish the magnitude of payoffs,

that is, that have very cautious and show slow learning, then the population learns the optimal

action. These results from are in contrast to those of Rustichini’s (1999). In Rustichini (1999),

when the population uses the exponential rule (fast learning) the best action is selected only

in situations where foregone payoffs are observed, whereas if populations uses the linear

rule (slow learning) best action is selected only in situations where foregone payoffs are not

observed. Here, instead, we find that under reinforcement learning it is optimal to disregard

foregone payoffs and to exhibit slow learning in both informational settings.

This paper’s contribution to the literature is twofold. Our first contribution to the lit-

erature is the introduction new techniques for dealing with correlated states of nature. As

mentioned, very few papers have studied the situation in which the future realization of the

state of nature depends on its past realizations. Most papers on learning consider either that
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the environment does not change or that it changes independently of past realizations. This

is due to the technical difficulties involved in dealing with correlated realizations of states. In

this paper we show how these difficulties can, at least partially, be overcome. The proofs for

the result for the Stochastic Better Response demonstrate how dependent randomness can

be dealt with by showing that for any possible realization of states of nature, the position

of the system in the future can be approximated by the differences in speed of convergence

towards each action.

The proof of the result for the case where foregone payoffs are not observed extends Ellison

and Fudenberg’s (1995) result to the case where the distribution of payoffs is not stationary.

We show that the behavior of a system that evolves according to a Markov Chain can be

approximated by the behavior of a system in which the probability of each state occurring is

independent and equal to the limiting distribution of the Markov Chain.

Our second contribution is the extension of the knowledge about stimulus response learn-

ing models and evolutionary models. The differences in the behavior of the population under

the two informational settings are very intriguing and of interesting application for real life

situations. For instance, why can inferior technologies come to dominate the market? A

well known example is that when the video format VHS took over from the superior format

Betamax. The model can explain that if the two technologies are not too different in terms

of performance, the stochastic evolution of nature can lead the population to lock on the

suboptimal choice forever. In the example with video formats, during the first months after

the release of both technologies, Betamax tapes could not hold an entire movie. This caused

the population to slowly adopt the VHS format. Once the true potential of Betamax was

revealed, it was too late, consumers had already locked on the inferior technology.

The rest of the paper is organized as follows. Section 2 presents the model. The two

informational settings are introduced in Section 3. Results are developed in Section 4. Section

5 presents a discussion and a deeper comparison of this work with the existing literature.

Finally, Section 6 concludes.

2 The Model

Consider a continuum of identical players of measure 1. Every period t = 0, 1, . . . players

in the population have to choose between action 1 or action 2. The payoff of each player at

time t depends on her action and on the current state of nature st ∈ {1, . . . ,m}. If a player

chooses action i and the state equals j then she gets a payoff πij ∈ [0, 1] with i ∈ {1, 2}
and j ∈ {1, . . . ,m}. Note that the payoff of each player does not depend on the actions

played by others but only on her own action and the state of nature. We assume there is
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no weakly dominant action. That is, there exists no i ∈ {1, 2} such that πij ≥ π−ij for all

j ∈ {1, . . . ,m}. Without loss of generality we assume that for some h < m, π1j ≥ π2j for

j ≤ h and π2j > π1j for j > h. That is, in the first h states action 1 yields at least the same

payoff as action 2. In the remaining states, action 2 yields more payoff than action 1. Finally,

we define πj as the vector of payoffs of action 1 and action 2 in state j, πj = (π1j , π2j).

The sequence of states of nature {st}∞t=0 follows a discrete Markov process P with m ≥ 2

states. The probability of transiting from state i to state j is given by θij ∈ [0, 1]. We assume

the Markov chain to be irreducible and aperiodic. Hence, if θij = 0 for some i, j ∈ {1, . . . ,m}
then there exists a sequences of states k1, k2, . . . , kn ∈ {1, . . . ,m} with n ≤ m such that

θik1 , θk1,k2 , . . . , θkn,j 6= 0. We define λ ∈ [0, 1]m as the limiting distribution of the Markov

chain P where λi is the weight the limit distribution puts in state i. An environment is

defined then by the payoff vectors together with a transition matrix, {(π1, . . . , πm), P}.

A strategy is the probability of playing each action at a given period. We denote by

σti ∈ [0, 1] with i ∈ {1, 2} and t ∈ {0, 1, . . .} the probability of playing action i at time

t. Define σ∗ = (σ∗1, σ
∗
2) ∈ [0, 1]2 as the strategy that maximizes payoff in the long run.

Formally, for any (σ̄1, σ̄2) ∈ [0, 1]2 we have that
m∑
j=1

λj (σ∗1π1j + σ∗2π2j) ≥
m∑
j=1

λj (σ̄1π1j + σ̄2π2j) .

Since we are dealing with a continuum of population, Law of Large Numbers applies and

we have that σti is also the fraction of players playing action i at time t. In an abuse of

notation, throughout the paper we will refer to σti as both the probability for a single player

of playing action i at time t and the fraction of the population playing action i at time t.

Note that given our setting, the sequence σi = {σti}∞t=0 is an irreducible and aperiodic

Markov process on [0, 1] for i ∈ {1, 2}. The aim of the paper is to characterize, if it exists,

the invariant distribution of such process.

The timing within each time period works as follows. First, players choose actions ac-

cording to their strategies. Then, nature decides the state. Third, payoffs are realized and

players observe their payoff and possibly forgone payoffs. The possibility of observing fore-

gone payoffs depends on the informational setting being considered. Finally, players update

their strategies.

When updating their strategies, players use the following information: their strategy at

the beginning of the period, the action they played and the payoff they got and possibly the

payoff the other action would have yielded (foregone payoffs). Formally, a learning rule is a

function b : [0, 1]2×{1, 2}2× [0, 1]2 → [0, 1]2. That is, a function that maps three arguments,

strategies for the present period, action played and payoff gotten and action not played and
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foregone payoff, into the strategies for the following period. The functional form of b will

depend on the specific learning rule under consideration.

3 Informational Settings

3.1 Forgone Payoffs are Observed

When both realized and foregone payoffs are observed, players best respond to the environ-

ment by increasing the probability of playing at the next period the action that was most

successful at the present period. We use a generalization of the best response behavior that

we call the Stochastic Better Response.

We write σt+1
i |j to denote the value of σt+1

i given that at period t the state of nature, st,

was j. The Stochastic Better Response is defined by

σt+1
1 |j =

{
σt1 + σt2µf(πj) if π1j ≥ π2j

σt1 − σt1µf(πj) otherwise,

where µ > 0 is a learning speed parameter. The function f : [0, 1]2 → [0, 1] maps the payoff

of the action that yielded higher payoff and the payoff of the other action into a number

between 0 and 1. This function is interpreted as the probability of adopting or learning the

action that was best given today’s state of nature. The only requirement on f is that it

must be weakly increasing in the payoff of the action that yielded higher payoff and weakly

decreasing in the payoff of the other action. That is, f is weakly increasing (decreasing) in πij
only if πij > (<)π−ij . We set f(πj) = 0 if and only if π1j = π2j . In other words, we assume

that the population does not change strategies if and only if both actions yielded the same

payoff. The function f could also be a constant. In the case where the function f is constant

and equals 1, the learning rule is equivalent to the standard best response in which players

show inertia with probability 1− µ (as in Samuelson (1994) and Kosfeld et. al. (2002)).

The intuition behind the Stochastic Better Response is the following. In each period, all

players observe the payoff of the action chosen and the payoff of the other action. Then every

player updates her strategy in the following way. The probability of playing action i in the

next period is increased if and only if action i yielded higher payoff than the other action

in the current period. The increase in the probability of playing action i will depend on the

difference in payoffs between the two actions.

A different interpretation of this same rule uses the fact that σi can be considered as the

fraction of population playing action i deterministically. Under this interpretation, at every

period, players that did not play the best action will change their actions (best response to

8



the environment) with some probability. The probability of changing action depends on the

difference in payoff between the two actions. The Stochastic Better Response is an individual

learning rule because actions played by other players have no effect on the updating of the

one’s own strategy.

As an example, we can look at two possible ways of writing the Stochastic Better Response.

In the first one below, payoffs enter exponentially in the function f .

σt+1
1 |j =

{
σt1 + σt2µ

eπ1j−eπ2j

eπ1j+eπ2j if π1j ≥ π2j

σt1 − σt1µ e
π2j−eπ1j

eπ1j+eπ2j otherwise
(1)

A second example could be the following, where only the payoff of the best action at the

current period enters in f and f is linear.

σt+1
1 |j =

{
σt1 + σt2µπ1j if π1j ≥ π2j

σt1 − σt1µπ2j otherwise

3.2 Foregone Payoffs are not Observed

When foregone payoffs are not observed, players have no means of directly comparing the

performance of both actions within the same time period. In this case, players reinforce

(possibly negatively) the action they played. How much they reinforce this action will depend

on the payoff achieved. We use a general case of the Cross (1973) learning rule that also

generalizes the rules in BMS. We call this rule the General Reinforcement Rule.

Let σt+1
i |kj be the probability by which a player plays action i at time t + 1 given that

action k was played at time t and state at time t, st, was j. The General Reinforcement Rule

is defined by

σt+1
1 |1j = σt1 + σt2g(π1j),

σt+1
1 |2j = σt1 − σt1g(π2j),

and similarly for σt+1
2 |1j and σt+1

2 |2j . The only assumption we make in g : [0, 1] →
[−1, 1] is that it must be weakly increasing in its argument. If g(πij) = πij then we have

the Cross Learning Rule. For the rules in BMS we have that g(πij) = Aij + Bijπij for

given Aij ∈ R and Bij ∈ R for i ∈ {1, 2} and j ∈ {1, . . . ,m}. BMS show that setting

Aij = −min{1 − σ0
1, σ

0
1}/max{1 − σ0

1, σ
0
1} and Bij = 1/max{1 − σ0

1, σ
0
1} for all i, j results

in the best monotone rule. A rule is defined to be monotone if the expected probability of

playing the action that is best given today’s state increases. A rule is said to be the best

monotone rule if the expected increase in playing the best action from one period to another

is highest among all monotone rules. Since BMS study a setting in which the evolution of
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nature follows a stationary distribution, the action that is best today is the action that is

best at every period. In our setting the action that is best today may not be the best action

tomorrow due to the Markovian evolution of the states of nature. This particular difference

will have important consequences in the optimality properties of the rules in BMS.

4 Results

4.1 Results - Foregone payoffs are Observed

Before going to the formal results, we present a small discussion on the behavior of the system

under the Stochastic Better Response. First, note that the biggest difference in the behavior

of the two rules that we consider lies in the way they behave when σi is close to the corners

(0 and 1). In particular, under the Stochastic Better Response the corners are not absorbing

while the opposite occurs under the General Reinforcement Rule.

Assume for this short discussion that there are only two states of nature. Under the

Stochastic Better Response, the speed at which a player adopts an action slows down as the

probability of playing that action increases. That is, consider that action 1 is played with

a high probability and that today action 1 yielded a higher payoff than action 2. Then the

increase in the probability of playing action 1 will be small. On the other hand, consider

that action 1 is played with a small probability and today action 1 yielded higher payoff than

action 2. In this case the probability of playing action 1 next period increases sharply.

Figure 1 shows the movements of the probability of playing action i (σi) as a response to

an action being better than the other in the current period. As above, assume that an action

is played with a high probability. Then the increase in playing that action in case it yielded

a higher payoff than the other action at the present period is low.

Figure 1: Stochastic Better Response

As one could possibly guess already, the Stochastic Better Response will not converge

to any of the corners. To study convergency, we consider the limit case when µ, which

can be viewed as the size of the changes in σi, gets arbitrarily small. Once such a limit is
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taken, the Stochastic Better Response converges to a single point. This issue can be seen

much more clear by looking at Figure 2, where a simulation is conducted. The specific

learning rule used is given by equation 1. The value of the parameters is set to m = 2,

π11 = 0.5, π12 = 0.3, π21 = 0.1, π22 = 0.6 and θ12 = θ21 = 0.3. The initial value σ1 was set to

σ0
1 = 0.5. The figure depicts the same simulation, the same random seed, for two situations:

one in which µ = 1 and another in which µ = 0.05.

Figure 2: Simulation - Stochastic Better Response

By studying the behavior of the system when µ is made arbitrarily small we are char-

acterizing the continuous time limit of σi. When µ is taken to zero the adjustment in the

strategies is made arbitrarily small while keeping constant the speed at which the environ-

ment changes. For other papers that use this continuous time limit approximation in settings

somewhat different from ours see, for example, Börgers and Sarin (1997) and Benäım and

Weibull (2003).

The following proposition characterizes the convergence of (σ1, σ2) under the Stochastic

Better Response when µ is arbitrarily small. Later in this section we present a sketch of the

proof. The formal proof is contained in the Appendix.

Proposition 1. Define

σ̃ =

∑
j:π1j≥π2j

λjf(πj)∑m
j=1 λjf(πj)

.

For any ε > 0 there exists a µ̄ > 0 such that if µ < µ̄ then

P
(

lim
t→∞

∣∣σt1 − σ̃∣∣ > ε
)

= 0.
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The interpretation of the result is the following. For simplicity of the exposition let us

focus on the evolution of the variable σ1 and assume again that there are only two states

of nature. The point σ̃ corresponds to the situation where an increase in σt1 due to action

1 yielding higher payoff at time t than action 2 would be equivalent to the decrease in σt1

from action 2 yielding more payoff than action 1. That is, with m = 2, σ̃ is the σt1 is such

that
∣∣σt+1

1 |1 − σt1
∣∣ =

∣∣σt+1
1 |2 − σt1

∣∣. In Figure 1, the point σ̃ would be such that the size of

the arrows (or jumps) towards the left from a given point σt1 is the same as the size of the

arrows towards the right from this same point σt1. Hence, σ̃ is the point where the marginal

movements towards action 1 and towards action 2 are equalized.

One can easily check that σ̃ < 1, so it will never be the case that the best action in the

long run is played with probability 1. For the general case where the Markov chain has m

states, action 1 is strictly better than action 2 if and only if
∑m

j=1 λjπ1j >
∑m

j=1 λjπ2j ; this

inequality holds in the simulation in Figure 2. However, for that simulation we have that

σ̃ = 0.57. That is, in the long run at any given period action 1 is played with probability of

0.57. This behavior is clearly suboptimal as if
∑m

j=1 λjπ1j >
∑m

j=1 λjπ2j then the σt1 that

maximizes payoff in the long run is σ∗ = 1.

Let us now look at a sketch of the proof. To studying the convergence of the sequence

σ1 we first show that it suffices to study the convergence of a sequence y = {yt}∞
t=t̂

, for t̂

large enough, which evolves in a world with just 2 states of nature and symmetric transition

matrix.

First, define the sequence σ̂1 = {σ̂t1}∞t=t̂ as σ̂t̂1 = σt̂1 and recursively for t > t̂

σ̂t+1
1 =



σ̂t1 + σ̂t2µf(π1) with probability λ1

...

σ̂t1 + σ̂t2µf(πh) with probability λh
σ̂t1 − σ̂t1µf(πh+1) with probability λh+1

...

σ̂t1 − σ̂t1µf(πm) with probability λm

.

Then we have that for any given t > t̂,

P
(
|E0(σt1)− E0(σ̂t1)| > ε

)
= 0. (2)

Hence, the expected value of both σ1 and σ̂1 converge in probability to the same value. This

is because the transition matrix P is irreducible and aperiodic. Now define the sequence

y = {yt}∞
t=t̂

as yt̂ = σ̂t̂1 and define recursively

yt+1 =

{
yt + 2(1− yt)µ

∑
j:π1j≥π2j

λjf(Πj) with probability 1/2

yt − 2ytµ
∑

j:π1j<π2j
λjf(Πj) with probability 1/2

.
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Note that the variable y evolves according to the expected movement in the long run of

the variable σ̂1. It can be easily seen that yt = σ̂t1 implies E0(yt+1) = E0(σ̂t+1
1 ). Hence, since

yt̂ = σ̂t̂1, the distribution of both yt and σ̂t1 is aperiodic and both E0(yt̂+1) and E0(σ̂t̂+1
1 ) are

linear in their arguments, we can state that E0(yt̂+k) = E0(σ̂t̂+k1 ) for any k ∈ N. Moreover,

we have that for any t > t̂, equation 2 must hold. Hence, we have that for any ε > 0 and

t > t̂,

P
(
|E0(σt1)− E0(yt)| > ε

)
= 0.

Furthermore, by making µ arbitrarily small we make the variance of both random variables

yt and σt1 to shrink to zero. Thus, their limiting distribution puts weight on a single point.

In other words, y and σ1 must converge in probability to a fixed value ȳ and σ̄ respectively.

Since E0(yt̂+k) converges to E0(σt̂+k1 ) for all k ∈ N, we must have that ȳ = σ̄. Hence, instead

of studying the convergence of the variable σ1 we focus on the convergence of the variable y.

This is more formally stated in Lemma 2 in the Appendix.

Note now that the point yt = σ̃, with σ̃ as defined in Proposition 1, solves the equation

yt + 2(1− yt)µ
∑

j:π1j≥π2j

λjf(πj) = yt − 2ytµ
∑

j:π1j<π2j

λjf(πj).

Define the sequence y1 = {yt1}∞t=t̂ as follows

yt1 =

{
yt if yt ≥ σ̃
σ̃ otherwise

.

Hence, we have that E0(yt) ≤ E0(yt1) for all t > t̂. Note that E0(yt+1
1 ) ≤ E0(yt1). Therefore,

y1 is a super-martingale with lower bound σ̃. Thus, by the martingale convergence theorem,

y1 converges in probability to σ̃. This implies that for t large enough, E0(yt) ≤ σ̃.

Define now the sequence y2 = {yt2}∞t=t̂ as follows

yt2 =

{
yt if yt ≤ σ̃
σ̃ otherwise

.

Therefore, we have that E0(yt) ≥ E0(yt2) for all t > t̂. Note that E0(yt+1
1 ) ≥ E0(yt2). Hence,

y2 is a sub-martingale with upper bound σ̃. Thus, by the martingale convergence theorem,

y2 converges in probability to σ̃. This implies that for t large enough, E0(yt) ≥ σ̃.

Hence, we know that for t large enough, E0(yt) ≤ σ̃ and E0(yt) ≥ σ̃. This implies that for

all t > t̂, E0(yt) = σ̃. Since the variance of y shrinks to zero as µ is made arbitrarily small,

we have that y converges in probability to σ̃ as µ is made arbitrarily small. Combined with

the fact that y converges in probability to σ1, this implies that σ1 converges in probability

to σ̃.
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4.2 Results - Foregone Payoffs are not Observed

We recall that the probability by which a player plays action i at time t+ 1 given that action

k was played at time t and state at time t was j is denoted by σt+1
i |kj and given by

σt+1
1 |1j = σt1 + σt2g(π1j),

σt+1
1 |2j = σt1 − σt1g(π2j).

Hence, σt+1
1 |j , which is the probability of playing action 1 at time t + 1 given that state

was j, equals σt1 + σt2g(π1j) if action 1 was played at time t and σt1− σt1g(π2j) if action 2 was

played at time t. Action i with i ∈ {1, 2} is played at time t with probability σti . Hence, since

we are dealing with a continuum of players, we can use Law of Large Numbers to state that

σt+1
1 |j = σt1σ

t+1
1 |1j + σt2σ

t+1
1 |2j .

This can be rewritten as

σt+1
1 |j = σt1

(
σt1 + (1− σt1)g(π1j)

)
+ (1− σt1)

(
σt1 − σt1g(π2j)

)
.

Thus, it follows that

σt+1
i |j = σti

(
1 + (1− σti) [g(πij)− g(π−ij)]

)
. (3)

Note that if we set g(πij) = πij , as in the Cross Learning Rule, the resulting law of motion

for σi is the discreet time version of the Replicator Dynamics. That is, if g(πij) = πij then

we have that

σt+1
i |j = σti + σti

(
πij − [σtiπij + σt−iπ−ij ]

)
.

The General Reinforcement Rule behaves completely differently to the Stochastic Better

Response. Under the General Reinforcement Rule, the changes in the variable σti become

smaller as σti gets closer to either bound. For example, consider that action 1 is played with

a high probability. Then the change in σi will be small independently of whether action 1

yielded higher payoff than action 2 or the other way around. Figure 3 shows the movements

of σ1 under the General Reinforcement Rule as a response to the environment.

As we see, the process will spend almost no time in intermediate values of σi. This will

allow us to draw our conclusions from analyzing only the behavior of σi in the neighborhoods

of its bounds. In this respect, our analysis will partially rely on the approach by Ellison and

Fudenberg (1995).
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Figure 3: General Reinforcement Rule

Figure 4: Simulation - General Reinforcement Rule

Figure 4 shows a simulation for the General Reinforcement Rule for the case where

g(πij) = πij and with the same parameters as the ones used in Figure 2. The figure plots the

result of the same simulation performed with two different random seeds.

It can be seen that the General Reinforcement Rule quickly converges to a situation in

which all the population plays the same action a fraction 1 of the time. An interesting

thing to note is that the action selected by the General Reinforcement Rule does not coincide

necessarily with the action that is best in the long run. The simulation on the right-hand side

shows a situation in which the General Reinforcement Rule converges to a situation where

all players in the population are playing the suboptimal action. As we will see, this is the

result of the two actions performing not too differently in terms of payoffs in the long run.

The following proposition, whose proof is presented in the Appendix, characterizes the

convergence of the sequence σ1.

Proposition 2. Define γj = 1 + g(π1j) − g(π2j) and γ̂j = 1 + g(π2j) − g(π1j) and consider
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the two inequalities:
m∑
j=1

λj log γj > 0, (4)

m∑
j=1

λj log γ̂j > 0. (5)

1. If both (4) and (5) hold then limt→∞ σ
t
1 does not exist.

2. If (4) holds but (5) does not then limt→∞ σ
t
1 = 1.

3. If (5) holds but (4) does not then limt→∞ σ
t
1 = 0.

4. If neither (4) nor (5) hold then limt→∞ σ
t
1 has full support over {0, 1}.

Since σ2 = 1 − σ1 the convergence of the sequence σ2 follows for the proposition above.

An important fact revealed by proposition above is that the process may fail to converge to

the best action. Consider for simplicity the Cross Learning Rule, where g(πij) = πij . Action

1 is weakly better than action 2 in the long run if and only if
∑m

j=1 λjπ1j ≥
∑m

j=1 λjπ2j . This

condition can be rewritten as
∑m

j=1 λjγj ≥ 1. However, even if
∑m

j=1 λjγj ≥ 1 holds, it may

still happen that
∑m

j=1 λj log γj < 0 holds and hence σ1 may not converge to 1. To make this

point more clear consider the case in which m = 2 and λ1 = λ2 = 0.5. That is, there are

only two states of nature and both states are equally likely in the long run. The following

corollary characterizes the convergence of σ1 in this case when action 1 is better in the long

run than action 2.

Corollary 1. Assume g(πij) = πij, m = 2, λ1 = λ2 = 0.5 and π11 + π12 > π21 + π22.

- If π11 + π12 − π21 − π22 − (π11 − π21)(π22 − π12) > 0 then limt→∞ σ1 = 1.

- Otherwise, limt→∞ σ1 has full support over {0, 1}.

Proof. We can rewrite inequalities (4) and (5) from Proposition 2 for the case with m = 2

and λ1 = λ2 = 0.5 as follows:

log γ1 + log γ2 > 0 (6)

log γ̂1 + log γ̂2 > 0. (7)

The conditions (6) and (7) can be rewritten as γ1γ2 > 1 and γ̂1γ̂2 > 1. These in turn can

be rewritten as

π11 + π12 − π21 − π22 − (π11 − π21)(π22 − π12) > 0, (8)

π21 + π22 − π11 − π12 − (π11 − π21)(π22 − π12) > 0. (9)
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It can be easily seen that equation (9) is never holding. Hence, by Proposition 2, if the

inequality (8) holds then we have that limt→∞ σ1 = 1, whereas if (8) does not hold we have

that limt→∞ σ1 has full support over {1, 2}.

For the process to select the best action, the two actions need to perform significantly

differently. That is, having action 1 better than action 2, π11 + π12 − π21 − π22 > 0, is not

enough for the process to select the best action.

Now we present the intuition for the proof of Proposition 2 for the case where g(πij) = πij .

The proof of Proposition 2 relies partially on the analysis by Ellison and Fudenberg (1995).

In Ellison and Fudenberg (1995), the realization of states of nature is independent of past

values of states. In order to be able to apply Ellison and Fudenberg’s analysis to our setting,

we proceed as follows. Given that the transition matrix P is irreducible and aperiodic, the

state of nature many periods ahead is independent of the state of nature today. This means

that by the law of large numbers, we can take the probability of each state being realized

many periods ahead as the limiting probability placed on it by the Markov chain. Therefore,

for the rest of the exposition we consider that the realization of states is independent of past

values. For a formal proof the reader is referred to Lemma 4 in the Appendix.

Assume, for the simplicity of the exposition, that there are only two states of nature. Let

1 − p be the probability by which state 1 occurs. Since the process spends almost no time

at its intermediate values, it suffices to examine the convergence of the variable σi when it

is close to its boundary values (0 and 1). To make the exposition clearer, we focus on the

sequence σ2 = 1 − σ1. Imagine that σ2 is arbitrarily close to 0. Then we can rewrite (3) as

follows:

σt+1
2 |j = γjσ

t
2 + o(σt2) (10)

where γj = 1 + g(π2j)− g(π1j) for j ∈ {1, 2} and o(σt2) is a term of order higher than σ2 and

hence is negligible when σ2 is arbitrarily small. Without loss of generality we can assume

that π11 > π21, which implies π12 < π22. Then we can rewrite (10) as

σt+1
2 |j =

{
γ1σ

t
2 + o(σt2) if π1j ≥ π2j

γ2σ
t
2 + o(σt2) otherwise

.

Since π11 > π21 and π12 < π22 we have that γ2 > 1 > γ1 > 0. Finally, note that π1j ≥ π2j

with probability 1− p and π1j < π2j with probability p.

The sequence σ2 converges to 0, or σ1 converges to 1, if and only if the sequence x =

{xt}∞t=0 with xt = log σt2 converges to −∞. The process for x when σt2 is close to 0 can be
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approximated by

xt+1 =

{
log γ1 + xt with probability 1− p
log γ2 + xt with probability p

.

Therefore, Et(xt+1) = (1− p) log γ1 + p log γ2 + xt. Hence, if (1− p) log γ1 + p log γ2 > 0

then Et(xt+1) > xt, which implies that x is a sub-martingale. Thus, by the Martingale

Convergence Theorem, if (1 − p) log γ1 + p log γ2 > 0 then x cannot converge to −∞ and

hence σ2 cannot converge to 0. Which implies that σ1 does not converge to 1.

Ellison and Fudenberg’s (1995) result is presented here for the readers’ convenience.

Lemma 1 (Ellison and Fudenberg (1995)). Let zt be a Markov Process on (0,1) with

zt+1 =

{
γ1z

t + o(zt) with probability 1− p
γ2z

t + o(zt) with probability p
.

Suppose that γ1 < 1 < γ2.

(a) If
p

1− p
> − log(γ1)

log(γ2)
,

then zt cannot converge to 0 with positive probability.

(b) If
p

1− p
< − log(γ1)

log(γ2)
,

then there are δ > 0 and ε > 0 such that if z0 < δ then P
(
limt→∞ z

t = 0
)
≥ ε.

(c) If
p

1− p
> − log(γ1)

log(γ1)
,

there is a z̄ > 0 such that for all z0 > 0 and all t ∈ {0, 1, . . . }, P
(
zt < z̄

)
= 0.

4.3 Efficient Learning Rules

We say that a learning rule is efficient if it is able to select to optimal action in the long run.

An interesting result is that if foregone payoffs are observed, then it is optimal to disregard

this information and to act as if only realized payoffs were observed.

When players observe the performance of both actions they can be “distracted” towards

the suboptimal action by the Markov chain. This is because even if the population plays

the optimal action with a high probability they can still observe the performance of the
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suboptimal action. Hence, since the suboptimal action is the best action for some states

of nature, randomness can constantly lead some players in the population to adopt the

suboptimal action for many periods in time. Thus, the continuous time limit of the process

converges to a situation in which the suboptimal action is played with a positive probability.

This is formally proven in the next proposition.

Proposition 3. Under the Stochastic Better Response, for some ε > 0 there exists no f :

[0, 1]2 → [0, 1] such that for all the environments ({π1, . . . , πm}, P ) we have that |σ̃1−σ∗1| < ε.

Proof. Assume, without loss of generality, that
∑m

j=1 λjπ1j >
∑m

j=1 λjπ2j . Hence, we have

that σ∗1 = 1.

The proof goes by contradiction. Assume that for all ε > 0 there exists a function

f : [0, 1]2 → [0, 1] such that for all the environments ({π1, . . . , πm}, P ), |σ̃1 − σ∗1| < ε.

This can be rewritten as follows: there exists a sequence of functions f = {fn}∞n=0 with

fn : [0, 1]2 → [0, 1] for all n ≥ 0 such that for all the environments we have that

lim
ε→0

lim
n→∞

σ̃1(fn) = σ∗1 = 1,

where σ̃1(fn) is the value of σ̃1 associated with the function fn.

The limit above holds if and only if

lim
ε→0

lim
n→∞

∑
j:π1j≥π2j

λjfn(πj)∑
j:π1j<π2j

λjfn(πj)
=∞ (11)

holds.

Take now an environment E = ({π1, π2}, P ) where 0 < π11 < π22 and πij = 0 for all

i 6= j. We could consider more general environments but that will only complicate the

exposition leaving the logic of the proof unchanged. P is such that action 1 is the optimal

one in the long run. That is, given π11 < π22 and πij = 0 for all i 6= j, P is such that∑2
j=1 λjπ1j >

∑2
j=1 λjπ2j . In this situation, equation (11) implies that

lim
ε→0

lim
n→∞

λ1fn(π1)
1− λ1fn(π2)

=∞. (12)

Given that the transition matrix P is irreducible we have that λ1 ∈ (0, 1). Thus, we must

have that (12) holds if and only if the following limit holds.

lim
ε→0

lim
n→∞

fn(π1)
fn(π2)

=∞ (13)

However, given that π11 < π22 and πij = 0 for all i 6= j, we have that fn(π1) < fn(π2) for

all n > 0. Hence, the sequence f is such that equation (13) cannot hold for the environment

E, a contradiction.
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The logic behind the proof is that if a learning rule makes the population to select the

optimal action in a given environment E′, then the rule must magnify the payoffs of each

action. This can be seen in equation (11), where, according to the learning rule, payoffs are

magnify to infinity. However, if this is the case, an environment E can be found such that

there is a very rare state for which the payoff of the suboptimal action is much bigger than

the payoff of the optimal action for that state. In this situation, the learning rule that make

the population to select the best action for environment E′ will fail to do so in environment

E.

When only realized payoffs are observed, a different force operates. Once the population

is almost always playing the optimal action, it is very difficult for players to take notice of

the periods in which the suboptimal action is giving more payoff than the optimal action. A

drawback for the population under this informational setting is that if both actions perform

not too differently in terms of payoffs, the population may lock on the suboptimal action

forever. However, a learning rule can be designed such that this inefficiency is avoided.

The next result states two important features about efficiency rules under the General

Reinforcement Rule. The first one is that if learning is sufficiently cautious in that the

magnitude of payoffs is diminished then the population will select the optimal action. The

second important feature is that how cautious the learning has to be depends on how big the

difference in the long run average payoff of both actions is. The more both actions differ in

terms of long run performance, the more cautious the learning has to be. This implies that

while a learning rule that is very cautious may not be able to make the population to select

the best action, this will only happen in environments where the two actions perform very

similarly in the long run. Hence, when cautious learning is exhibited, the possible loss in

payoff from not selecting the best action is small.

Proposition 4. Under the General Reinforcement Rule, assume g : [0, 1]→ [−1, 1] is given

by

g(πij) = xπij

where

x =
1 + 4ε−

√
1 + 8ε

4ε
for some ε > 0. If |

∑m
j=1 λjπ1j −

∑m
j=1 λjπ2j | > ε, then we have that limt→∞ σ

t
1 = σ∗1.

Proof. Assume, without loss of generality, that
∑m

j=1 λjπ1j >
∑m

j=1 λjπ2j . Hence, we have

that σ∗1 = 1. Moreover, given the inequality |
∑m

j=1 λjπ1j −
∑m

j=1 λjπ2j | > ε, we must have

that
∑m

j=1 λj(xπ1j − xπ2j) > xε for all x > 0.
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Using the first order Taylor series for the logarithmic function around 1 we get that

log(1 + xπ1j − xπ2j) = xπ1j − xπ2j +R1(1 + xπ1j − xπ2j),

where R1(1 + xπ1j − xπ2j) is the remainder term and x > 0. Using the Lagrange form we

can rewrite the remainder term as

R1(1 + xπ1j − xπ2j) =
−1/y2

2
(1 + xπ1j − xπ2j − 1)2,

where y lies between 1 and 1+xπ1j−xπ2j . We can bound the absolute value of the remainder

term in the following way:

|R1(1 + xπ1j − xπ2j)| ≤
1/(1− x)2

2
(xπ1j − xπ2j)2

≤ x2

2(1− x)2
.

Moreover, we have that

log(1 + xπ1j − xπ2j) = xπ1j − xπ2j +R1(1 + xπ1j − xπ2j)

≥ xπ1j − xπ2j − |R1(1 + xπ1j − xπ2j)| .

This can be rewritten as
m∑
j=1

λj log(1 + xπ1j − xπ2j) ≥
m∑
j=1

λj (2xπ1j − xπ2j − |R1(1 + xπ1j − xπ2j)|)

> xε− x2

2(1− x)2
.

If we take x > 0 to be the minimum solution to the equation

xε− x2

2(1− x)2
= 0,

we get that

x =
1 + 4ε−

√
1 + 8ε

4ε
. (14)

Thus, setting x > 0 as in equation (14) yields

m∑
j=1

λj log γj > 0. (15)

Similar arguments show that
m∑
j=1

λj log(1− xπ1j + xπ2j) ≤ −
m∑
j=1

λjxπ1j − xπ2j + |R1(1− xπ1j + xπ2j)|

< −xε+
x2

2(1− x)2
.
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Hence, setting again x > 0 as in equation (14) yields

m∑
j=1

λj log γ̂j < 0. (16)

Finally, combining inequalities (15) and (16) with Proposition 2 we get that if g(πij) =

xπij , where we set x > 0 as in equation (14), and if |
∑m

j=1 λjπ1j −
∑m

j=1 λjπ2j | > ε, then we

have that limt→∞ σ
t
1 = σ∗1.

Note that if we set g(πij) as in Proposition 4, then limε→0 g(πij) = 0. That is, a rule

that makes the population able to select the best action in all the environments must exhibit

arbitrarily slow learning.

5 Discussion

A way of enriching the model could be by adding idiosyncratic perturbations to payoffs.

This could be done by adding εht to each payoff πij . εht are normally distributed zero mean

random variables that are independent across players h and time t. Since the rules we consider

under both scenarios can treat payoffs in a non-linear way, it is not true that the process

will converge to the same values as compared to the case without noise. The reason is the

same as why, for instance, E(x2) 6= E
(
(x+ ε)2

)
with E(ε) = 0. However, it can easily be

verified that adding noise makes no difference to our results for all the learning rules that

treat payoffs linearly. Rules that treat payoffs linearly include the standard best response and

the bernoulli best response, for the case where foregone payoffs are observed, and the Cross

Learning Rule and the rules in BMS, for the case where foregone payoffs are not observed.

One might argue that if players had means of comparing the payoff of the same action

across different time periods, they could recall different payoff realizations over time and have

significantly more information about the world they are living in. However, as showed by

Rustichini (1999) in a setting very similar to ours, even if players had infinite memory and

could make this comparison, it is not true that they will learn the best action for sure.

5.1 Relating our results for the Stochastic Better Response with

Kosfeld et. al. (2002)

Kosfeld et. al. (2002) present a setting where a finite set of players play a normal-form game.

Each period players update their strategies myopically in the following way. They increase

the probability of playing an action if and only if that action is a best response to the action

22



played by the other players. If there are many actions that are a best response, the increase

in probability is shared equally among the actions that are a best response. Formally, let

σti(j) be the probability by which player j plays action i at time t. Define s−j as the actions

played by all the players but j. Finally, let Bj(s−j) be the set of actions that are a best

response for player j to s−j and let |Bj(s−j)| be the cardinality of Bj(s−j). The evolution in

the strategies of every player j is governed by

σt+1
i (j) =

{
(1− µ)σti(j) + µ/|Bj(s−j)| if sj ∈ Bj(s−j)
(1− µ)σti(j) otherwise,

(17)

where µ ∈ (0, 1) is exogenously given.

Comparing this rule with the Stochastic Better Response there are two points worth

noting. First, the rule in Kosfeld et. al. (2002) is a particular case of the Stochastic Better

Response. Second, and most importantly, in our model players play against nature and not

against themselves. Hence, in Kosfeld et. al.’s (2002) setting, players best respond to the

actions of other players while in our setting players best respond to the actions of nature.

Kosfeld et. al. (2002) show that the continuous time limit of their process, when µ is

made arbitrarily small, converges to a so-called Best-Reply Matching Equilibrium. In a Best-

Reply Matching Equilibrium, for every player, the probability of playing a given action is

equal to the probability by which that action is a best response given the strategies of the

other players.

Their result and our result for the Stochastic Better Response have the same intuition

behind them and in some situations are equivalent. Given that in our setting there are only

two action we can rewrite (17) as follows.

σt1|j =

{
σt1 + σt2µ if π1j ≥ π2j

σt1 − σt1µ otherwise

In Proposition 1 we proved that the sequence σ1 defined above converges in probability

to

σ̂ =

∑
j:π1j≥π2j

λj∑m
j=1 λj

=
∑

j:π1j≥π2j

λj .

That is, σti , which is the probability of playing action i, converges to the limiting proba-

bility that action i is a best response to the environment. Hence, the population strategies

match the nature’s strategies, exactly as predicted by the Best-Reply Matching Equilibrium.
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In our results for the Stochastic Better Response we consider a much bigger set of rules

than do Kosfeld et. al. (2002). In particular, Kosfeld et. al. (2002) only consider one rule.

However, for the specific rule used by Kosfeld et. al. (2002), their results and ours come from

two different settings, as in their setting players play against each other while in our setting

players play against nature.

6 Conclusions

In this paper we investigated learning within an environment that changes according to a

Markov chain and where players learn according to reinforcement. The payoff of each possible

action depends on the state of nature. Since transition between states follows a Markov Chain,

there is correlation between today’s state and tomorrow’s state of nature. We studied two

different scenarios, one in which realized and foregone payoffs are observed and another in

which only realized payoffs are observed. Our contribution to the literature relies on the

fact that we studied reinforcement learning in a setting where the realization of the state of

nature is correlated with the past.

The literature has focused on the study of learning only in a setting where the realization

of states (or the shocks to payoffs) is independent of its past values. The reason for this is

the technical complexities involved in dealing with the correlated realization of states.

There are several questions left for further research. For the case where foregone payoffs

are observed, we only characterized the asymptotic distribution when the learning step goes

to zero. For the case where foregone payoffs are not observed we are unable to quantify the

probabilities of reaching each endpoint where the process does not converge deterministically

to a single point.

The present piece of work explores learning in two very general scenarios but there are

other settings that could be of interest. For instance, how does local interaction affect learning

when the environment changes according to a Markov chain? What if there are non-stochastic

idiosyncratic payoff differences among players? Our paper also tried to shed some light on

the techniques that could be used for dealing with such environments. We expect that in the

future more papers dealing with non stationary environments will appear.
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Appendix

Proof of Proposition 1

We begin by proving the following lemma.

Lemma 2. For any ε > 0 there exists a µ̂ > 0, t̂(ε) > 0 and a sequence y = {yt}∞
t=t̂

given by

yt̂ = σt̂1 and recursively for t > t̂

yt+1 =

{
yt + 2(1− yt)µ

∑
j:π1j≥π2j

λjf(πj) with probability 1/2

yt + 2ytµ
∑

j:π1j<π2j
λjf(πj) with probability 1/2

,

such that for any µ < µ̂ we have that

P
(

lim
t→∞
|σt1 − yt| > ε

)
= 0.

Proof. In the main text we defined h < m as the minimum natural number such that π1j ≥ π2j

for j ≤ h and π2j > π1j for j > h. For any given ε > 0 define now the sequence σ̂1 = {σ̂t1}∞t=t̂(ε)
as σ̂t̂(ε)1 = σ

t̂(ε)
1 and recursively for t > t̂(ε)

σ̂t+1
1 =



σ̂t1 + σ̂t2µf(π1) with probability λ1

...

σ̂t1 + σ̂t2µf(πh) with probability λh
σ̂t1 − σ̂t1µf(πh+1) with probability λh+1

...

σ̂t1 − σ̂t1µf(πm) with probability λm

.
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Fix t̂(ε) to be the minimum natural number such that for any given t > t̂(ε),

P
(
|E0(σt1)− E0(σ̂t1)| > ε

)
= 0. (18)

The existence of such t̂(ε) is guaranteed by the fact that the transition matrix P is irreducible

and aperiodic and by the Perron-Frobenius theorem applied to P . In an abuse of notation,

from now on we will simply write t̂ to denote t̂(ε).

Since E0 is linear in both σ̂t1 and yt, we have that for all t > t̂, σ̂t1 = yt if and only if

E0(σ̂t+1
1 ) = E0(yt+1). Thus, given that yt̂ = σ̂t̂1, that E0 is linear in both σ̂t1 and yt and that

the distribution of both y and σ̂1 is aperiodic, we have that

E0(yt̂+k) = E0(σ̂t̂+k1 ) (19)

for all k ∈ N.

Given the definition of y and equations (18) and (19) we must have that for any ε > 0

and any t > t̂,

P
(
|E0(σt1)− E0(yt+1)| > ε

)
= 0. (20)

Given the specification of σ1 and the definitions of σ̂1 and y, as µ gets arbitrarily small,

the variance of σ1, σ̂1 and y gets arbitrarily small as well. Formally, for any ε > 0 there

exists a µ̂ > 0 and a t > t̂ such that for any µ < µ̂ and k ∈ N we have that V art(σt+k1 ) < ε,

V art(σ̂t+k1 ) < ε and V art(yt+k) < ε.

Assume that σ1 does not converge in probability to y. As µ goes to zero the variance of

both σ1 and y goes to zero. Hence, both variables will converge in probability to a single

point. That is, for all δ > 0 there exists σ̄1, ȳ, µ̄ > 0 and t̄ ∈ N such that for all µ < µ̄

and t > t̄, P
(
|σt1 − σ̄1| > δ

)
= 0 and P

(
|yt1 − ȳ| > δ

)
= 0. This can also be rewritten as

P
(
|E0(σt1)− σ̄1| > δ

)
= 0 and P

(
|E0(yt1)− ȳ| > δ

)
= 0.

If σ̄1 6= ȳ, them we must have that exists a γ > 0 and a t ∈ N such that

P
(
|E0(σt+k1 )− E0(yt+k)| > γ

)
> 0

for all k ∈ N, which contradicts equation (20). Hence, given that P
(
|σt1 − σ̄1| > δ

)
= 0,

P
(
|yt1 − ȳ| > δ

)
= 0 and σ̄1 = ȳ, we must have that for any ε > 0 there exists a µ̂ such that

for all µ < µ̂,

P
(

lim
t→∞
|σt1 − yt| > ε

)
= 0.
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In the next lemma we establish that y converges in probability to σ̃.

Lemma 3. For any ε > 0 there exists a µ̂ > 0 such that for any µ < µ̂ we have that

P
(

lim
t→∞
|yt − σ̃| > ε

)
= 0.

Proof. First, note that the point yt = σ̃, with σ̃ as defined in Proposition 1, solves the

equation

yt + 2(1− yt)µ
∑

j:π1j≥π2j

λjf(πj) = yt − 2ytµ
∑

j:π1j<π2j

λjf(πj).

Define now the sequence y1 = {yt1}∞t=t̂ as follows

yt1 =

{
yt if yt ≥ σ̃
σ̃ otherwise

.

Hence, we have that E0(yt) ≤ E0(yt1) for all t > t̂. Note that if yt > σ̃ then we have that

E0(yt+1) < E0(yt). This implies that E0(yt+1
1 ) < E0(yt1) for all yt1 > σ̃ and E0(yt+1

1 ) = E0(yt1)

for yt1 = σ̃. Therefore, y1 is a super-martingale with lower-bound σ̃. Thus, by the Martingale

convergence theorem, limt→∞ y
t
1 exists. Given that E0(yt+1

1 ) < E0(yt1) for all yt1 > σ̃ and

E0(yt+1
1 ) = E0(yt1) for yt1 = σ̃, we must have that limt→∞ y

t
1 = σ̃. This implies that y1

converges in probability to σ̃.

Define now the sequence y2 = {yt2}∞t=t̂ as follows:

yt1 =

{
yt if yt ≤ σ̃
σ̃ otherwise

.

Hence, we have that E0(yt) ≥ E0(yt1) for all t > t̂. Note that if y < σ̃ then we have that

E0(yt+1) > E0(yt). This implies that E0(yt+1
2 ) > E0(yt2) for all yt2 < σ̃ and E0(yt+1

2 ) = E0(yt2)

for yt2 = σ̃. Therefore, y2 is a sub-martingale with upper-bound σ̃. Thus, by the Martingale

convergence theorem, limt→∞ y
t
2 exists. Given that E0(yt+1

2 ) > E0(yt2) for all yt2 < σ̃ and

E0(yt+1
2 ) = E0(yt2) for yt1 = σ̃, we must have that limt→∞ y

t
2 = σ̃. This implies that y2

converges in probability to σ̃.

Hence, we have that for any ε > 0 exists a µ̂ such that for all µ < µ̂,

P
(

lim
t→∞
|yt1 − σ̃| > ε

)
= 0

P
(

lim
t→∞
|yt2 − σ̃| > ε

)
= 0.

We know, given the definition of y, that for any ε > 0 there exists a µ̂ > 0 and a t > t̄

such that for any µ < µ̂ and h > t we have that V art(yt+h) < ε. This, together with the fact

that E0(yt) ≤ E0(yt1) and E0(yt) ≥ E0(yt1) for all t > t̂ implies that for all t > max{t̄, t̂} we

must have that limt→∞ y
t = σ̃. This implies that y converges in probability to σ̃.
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Now we are able to prove the result in Proposition 1.

Proof of Proposition 1. We know from Lemma 2 that σ1 converges in probability to y. From

Lemma 3 we also know that y converges in probability to σ̃. Hence, we must have that σ1

converges in probability to σ̃. This is the result of the Proposition.

Proof of Proposition 2

Whenever σt1 is arbitrarily close to 0 we have that

σt+1
1 |j = σt1(1 + g(π2j)− g(π1j)) + o(σt1).

Define γj = 1 + g(π2j) − g(π1j) for all j ∈ {1, . . . ,m}. Hence, given that g is increasing,

we have that γi ≤ 1 < γj if and only if π1i ≥ π2i and π1j < π2j . We can approximate the

equation for the evolution of the sequence σ1 when σt1 is arbitrarily close to 0 as follows:

σt+1
1 |j = γjσ

t
1.

Lemma 4. For any σ̄t1 ∈ (0, 1) and any ε > 0 there exists a σt1 < σ̄t1 and a k̄ ∈ N such that

for k > k̄

P
(∣∣σt+k1 − σ̂t+k1

∣∣ > ε
)

= 0,

where σ̂t+k̄1 = σt+k̄1 and

σ̂t+k+1
1 =


γ1σ

t+k
1 with probability λ1

...

γmσ
t+k
1 with probability λm

for k > k̄.

Proof. Given that the transition matrix P is irreducible and aperiodic and that the number of

states is finite, we have the standard result that the empirical distribution of states converges

to the limiting distribution of states. This can be rewritten as: for any δ > 0 there exists a

k̄(δ) ∈ N such that for k > k̄(δ),

P

(∣∣∣∣∣
∑k

t=0 1{st=j}

k + 1
− λj

∣∣∣∣∣ > δ

)
= 0 (21)

for all j ∈ {1, . . . ,m}.

We have seen before that if σt1 is arbitrarily close to 0 we can write σt+1
1 |j = γjσ

t
1. In

other words, for any κ > 0 there exists a σ̄1(κ) ∈ (0, 1) such that if σt1 < σ̄1(κ) then

P
(∣∣σt+1

1 |j − γjσt1
∣∣ > κ

)
= 0
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for all j ∈ {1, . . . ,m}. This result can also be expressed as follows. For any κ > 0 and any

k ∈ N there exists a σ̄1(κ) ∈ (0, 1) such that if σt1 < σ̄1(κ) then

P
(∣∣∣σt+k+1

1 |j − γjσt+k1

∣∣∣ > κ
)

= 0. (22)

Hence, we have the following two facts. First, the probability of a state being realized a

sufficiently far way number of periods converges to the limiting distribution of the Markov

chain. Second, that σt+1
1 |j behaves as γjσt1 if σt1 is sufficiently small. Then, for k sufficiently

large and σt1 sufficiently close to 0 we have that for all j ∈ {1, . . . ,m}, σt+k+1
1 = γjσ

t+k
1 with

probability λj . In other words, combining the results in equations (21) and (22) we can write

that for all ε > 0 there exists a k̄(ε) ∈ N and σ̄1(ε) ∈ (0, 1), such that for all k > k̄(ε) and

σt1 < σ̄1(ε) we have that

P
(∣∣σt+k1 − σ̂t+k1

∣∣ > ε
)

= 0,

where σ̂t+k̄1 = σt+k̄1 and

σ̂t+k+1
1 =


γ1σ

t+k
1 with probability λ1

...

γmσ
t+k
1 with probability λm

for k > k̄.

Lemma 5. The sequence σ1 cannot converge to 0 if
m∑
j=1

λj log γj > 0.

There is a positive probability that the sequence σt1 converges to 0 if

m∑
j=1

λj log γj < 0.

Proof. Reasoning as in the proof of Lemma 1 in Ellison and Fudenberg (1995), the sequence

σ1 can converge to zero if and only if the sequence y = log σ1 can converge to −∞. Using again

the proof from Lemma 1 in Ellison and Fudenberg (1995) and Lemma 4 in this appendix,

the sequence y can converge to −∞ only if
∑m

j=1 λj log γj < 0. The result follows.

To study the situation in which the process is arbitrarily close to 1, we proceed as follows.

First, we define wt = 1 − σt1. Then we apply the analysis above to the variable wt. Define

γ̂j = 1 + g(π2j)− g(π1j). Then we have that for all ε > 0 there exists a k̄ ∈ N and w̄ ∈ (0, 1)

such that for all k > k̄ and wt < w̄ we have that

P
(∣∣wt+k − ŵt+k∣∣ > ε

)
= 0,
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where ŵt+k̄ = wt+k̄ and

ŵt+k+1 =


γ̂1w

t+k with probability λ1

...

γ̂mw
t+k with probability λm

for k > k̄.

An analogous to Lemma 5 when σt1 is close to 1 is the following:

Lemma 6. The sequence σ1 cannot converge to 1 if

m∑
j=1

λj log γ̂j > 0.

There is a positive probability that the sequence σ1 converges to 1 if

m∑
j=1

λj log γ̂j < 0.

Summing up the results from lemmas 5 and 6 the result in Proposition 2 follows.

31


