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Abstract. Different identification schemes for monetary policy shocks have
been proposed in the literature. They typically specify just-identifying re-
strictions in a standard structural vector autoregressive (SVAR) framework.
Thus, in this framework the different schemes cannot be checked against
the data with statistical tests. We consider different approaches how to use
the data properties to augment the standard SVAR setup for identifying the
shocks. Thereby it becomes possible to test models which are just identi-
fied in a standard setting. For monthly US data it is found that a model
where monetary shocks are induced via the federal funds rate is the only one
which cannot be rejected when the data properties are used for identification.
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1 Introduction

In a standard structural vector autoregressive (SVAR) approach, it is typi-
cal that just enough restrictions are imposed to just-identify the structural
shocks. Clearly, any assumptions regarding certain restrictions imposed on
a model may be incorrect and imposing false restrictions may lead to biased
results and wrong conclusions. Therefore the desire to impose as few restric-
tions as possible is understandable. The drawback is, however, that different
just-identified models cannot be compared by statistical tests. Comparisons
therefore often rely on plausibility checks. For example, one may prefer one
model to another one because the impulse responses of the former model
have more plausible shapes.

Monetary policy is an active research area where different SVAR models
coexist. For example, Christiano, Eichenbaum and Evans (1999) (henceforth
CEE) review a number of identification schemes for SVAR models which
have been used in the related literature to specify monetary policy shocks
and analyze their impact on the economy. In some of these schemes, the
structural restrictions just-identify the monetary policy shocks. Thus, in the
standard setup, the different schemes cannot be checked against the data
with statistical tests but a decision on which scheme to use is based on the
subjective opinion of specific researchers. For example, CEE suppose that
certain reactions to monetary policy shocks are widely accepted in the pro-
fession and therefore only identification schemes for monetary policy shocks
should be considered which imply these widely accepted responses of the
variables. Even if one accepts this strategy, it may not lead to a unique set
of shocks.

Therefore, in this study we will use different approaches which use certain
statistical properties of the data which can generate additional identifying
information for the structural shocks. The first approach of this kind uti-
lizes the change in the volatility of the shocks. It was proposed by Rigobon
(2003), Rigobon and Sack (2003) and Lanne and Lütkepohl (2008a). It has
been argued in the related literature that there has been a moderation of
marcoeconomic fluctuations in the mid 1980s and our first approach uses
this feature to identify monetary policy shocks. In this approach the change
in the covariance structure of the model is assumed to have occurred at some
prespecified point in time. An alternative approach was proposed by Lanne
and Lütkepohl (2008b). They show how a nonnormal distribution of the
residuals can be used as identifying information. In particular, they assume
a mixed normal distribution of the residuals and show how this feature of the
data can be utilized for identification purposes. Again statistical tests can
be applied to check the normality of the data and, if rejected, allowing for a
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more general class of distributions is a natural next step. We will consider
these two different approaches to compare a set of different identification
schemes for US monetary policy.

More precisely, in our empirical analysis we use the same variables as
CEE: log of real aggregate output (Yt) and the log of its deflator (Pt), the
smoothed change in an index of sensitive commodity prices (PCOMt), the
log of nonborrowed reserves plus extended credit (NBRt), the log of total
reserves (TRt), the federal funds rate (FFt) and the log of M1 (Mt). We use
monthly US data only while CEE consider both monthly and quarterly data.
As monthly data is available for most of the variables of interest here, it is
worth utilizing the additional information in the more frequently observed
series. Only output is not available in monthly form and therefore proxies
as in CEE are used for this variable and its deflator (see Section 5). Our
sampling period is 1965M7 - 1995M6 which is also the sampling period used
by CEE. Although longer time series are now available, it may be worth
considering exactly the same data as CEE to ensure that differences in the
results are driven by the different methods used rather than different data.

Our study is structured as follows. In the next section the VAR model
setup and the different sets of identifying restrictions considered by CEE
will be presented. In Section 3 the ‘statistical’ identification strategies are
presented. Estimation of the structural models is discussed in Section 4 and
the results of the empirical analysis are presented in Section 5. Conclusions
are drawn in Section 6.

2 The Model Setup

CEE consider a K-dimensional reduced form VAR(p) model of the type

Zt = Ddt + A1Zt−1 + · · ·+ ApZt−p + ut, (2.1)

where dt is a deterministic term with coefficient matrix D, the Aj’s (j =
1, . . . , p) are (K ×K) coefficient matrices and ut is a white noise error term.
They partition the K-dimensional vector of observable variables Zt as

Zt =




X1t

St

X2t


 , (2.2)

where X1t is (k1×1), St is (1×1) and X2t is (k2×1). The vector X1t contains
variables whose contemporaneous values appear in the monetary authority’s
information set, i.e., variables orthogonal to the monetary policy shock. The
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variables in X2t only appear with a lag in the information set and St is the
monetary authority’s policy instrument.

The structural shocks are usually obtained from the reduced form resid-
uals by a linear transformation. If only specific structural shocks are of
interest, it suffices to find a linear transformation of ut which delivers these
particular shocks of interest and possibly specifies the other shocks in an ar-
bitrary way. In our case the monetary shocks are of primary interest. CEE
show that a block triangular transformation εt = A0ut, with

A0 =




a11
(k1×k1)

0
(k1×1)

0
(k1×k2)

a21
(1×k1)

a22
(1×1)

0
(1×k2)

a31
(k2×k1)

a32
(k2×1)

a33
(k2×k2)


 (2.3)

fully identifies the monetary policy shocks as the (k1 +1)th component of εt.
Notice that the other elements of A0 may be chosen such that A−1

0 A−1′
0 = Σu

and, hence, εt ∼ (0, IK).
CEE consider three alternative schemes for just-identifying the monetary

policy shocks:

1. FF policy shock : X1t = (Yt, Pt, PCOMt)
′, X2t = (NBRt, TRt,Mt)

′ and
the federal funds rate is the policy instrument, that is, St = FFt. This
identification scheme is motivated by arguments presented in Bernanke
and Blinder (1992), Sims (1986, 1992) and others.

2. NBR policy shock : X1t = (Yt, Pt, PCOMt)
′, X2t = (FFt, TRt,Mt)

′ and
St = NBRt. This scheme is based on work, for instance, of Christiano
and Eichenbaum (1992).

3. NBR/TR policy shock: X1t = (Yt, Pt, PCOMt, TRt)
′, X2t = (FFt,Mt)

′

and St = NBRt. CEE attribute this identification scheme to Strongin
(1995).

As mentioned earlier, in a standard SVAR setting the implied zero restric-
tions on A0 suffice to just-identify the monetary policy shocks. They do not
provide over-identifying restrictions, however, which could be tested against
the data. In the next section it will be explained how such over-identifying
information can be obtained from the statistical properties of ut which are
usually not taken into account in a standard SVAR analysis.
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3 Statistical Approaches for the Identifica-

tion of Shocks

3.1 Identification via Heteroskedasticity

Our first approach to identify the structural shocks via specific statistical
properties of the data assumes that there is at least one change in the
volatility of the residuals and, hence, the residuals of the basic model (2.1)
are heteroskedastic. As mentioned earlier, this approach has been used in
SVAR analyses by Rigobon (2003), Rigobon and Sack (2003) and Lanne and
Lütkepohl (2008a). In the first paper the relationship between the returns on
different bonds is analyzed. Rigobon and Sack (2003) use the idea of identi-
fication via heteroskedasticity to investigate the relation between monetary
policy and the stock market. Finally, Lanne and Lütkepohl (2008a) use this
devise to compare different identification schemes for US monetary policy.
The latter study is closely related to the one presented in the empirical sec-
tion of the present paper. The model setup and sample period are slightly
different, however.

To introduce the idea, let us assume that there is a single change in the
volatility of the variables during the sample period. Hence, suppose we have
a sample of size T , Z1, . . . , ZT , and there is a change in the volatility of the
shocks during the sample period, say in period TB, so that

E(utu
′
t) =

{
Σ1 for t = 1, . . . , TB − 1,
Σ2 for t = TB, . . . , T.

(3.1)

From matrix theory it is well-known that the covariance matrices Σ1 and Σ2

can be diagonalized simultaneously, that is, there exists a (K×K) matrix W
and a diagonal matrix Ψ = diag(ψ1, . . . , ψK) with positive diagonal elements
ψi, i = 1, . . . , K, such that Σ1 = WW ′ and Σ2 = WΨW ′ (e.g., Lütkepohl
(1996, Section 6.1.2)). Here the diagonal elements of Ψ reflect the changes
in the variances of the shocks after the possible change in volatility has
occurred. In fact, a change in volatility has occurred if the ψi’s are different
from one. Lanne and Lütkepohl (2008b) show that W is unique except
for sign changes if all ψi’s are distinct and ordered in some way. Thus, if
we choose A−1

0 = W , we get uniqueness of the shocks εt = A0ut (except
for changes in sign) without the need for further identifying assumptions.
Choosing A0 = W−1, the structural shocks have identity covariance matrix
in the first regime and Ψ in the second regime, that is,

E(εtε
′
t) =

{
IK for t = 1, . . . , TB − 1,
Ψ for t = TB, . . . , T.
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Hence, they are orthogonal in both regimes. In turn, requiring that they are
orthogonal in both regimes suffices to identify our shocks uniquely if all ψi’s
are distinct. Notice that orthogonality of the structural shocks is a standard
assumption in SVAR analysis.

The requirement that all ψi’s are distinct is satisfied if the changes in
volatility are not proportional in all variables. Even if the volatility in one
of the shocks does not change at all, that is, one of the ψi’s may be unity,
the ψi’s may of course be all distinct and this is the essential requirement for
uniqueness of A0. Any other restrictions for A0, as for example formulated
in Section 2, then become over-identifying. Since the change in variance is a
testable assumption, we do not have to rely exclusively on information from
economic theory or other sources to ensure identification of the structural
shocks. Instead we can use the information in the data and apply statistical
procedures to obtain identification.

To obtain uniqueness of W and, hence, of A0 we may, for example, order
the ψi’s from smallest to largest. If restrictions are imposed on A0, they may
only be compatible with one specific ordering of the ψi’s and not necessarily
with an ordering according to size. Therefore, in estimations with restrictions
on A0 we do not impose any specific ordering on the ψi’s but let the data
decide which one is best. This is no problem in principle because local
identification is ensured for any ordering of the ψi’s, provided they are all
distinct.

The fact that it is always possible to reverse the signs of all elements
in a single column of W = A−1

0 without affecting the likelihood is not a
problem either in the present context because for asymptotic theory to work
we only need local identification which is ensured despite the sign changes.
For practical purposes changing all signs in a column of W just means to
consider a negative shock if the shock is positive originally or vice versa.

It is also possible, of course, to accommodate more than one change in
volatility. If there are n + 1 different regimes and the covariances in the
different regimes are WW ′, WΨ1W

′, . . . , WΨnW
′, where the Ψi’s are all

diagonal matrices, uniqueness of W (up to sign) is ensured, for example, if
the diagonal elements in only one of the Ψi matrices are all distinct and we
can again choose A0 = W−1.

So far we have assumed that only the residual covariance matrix changes
and the other VAR parameters remain constant. This assumption was made
for convenience because it ensures identification of the shocks. Obviously,
statistical tests may be used to check the constancy of the other parameters
as well. CEE and Bernanke and Mihov (1998a) argue that structural changes
found by other authors in the data set underlying our empirical study may
have been due to a change in the residual covariances only and not to a
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change in the whole dynamic structure. While identification of the shocks
can also be achieved if other parameters vary as well, the impulse responses
may be affected if there are changes in the other parameters. Such changes
would therefore complicate our analysis.

If uniqueness of A0 is ensured by residual heteroskedasticity, then all the
restrictions from economic theories are over-identifying and, hence, can be
tested. In particular, the just-identifying restrictions discussed in the previ-
ous section can be tested and we will do so in the empirical section. In other
words, it can be checked whether they are compatible with orthogonality of
the shocks across the different regimes. In the next subsection we will present
another approach to serve the same purpose.

3.2 Mixed Normal Residuals

In our analysis of the reduced form VAR model for the time series described
in Section 1, we will find strong evidence that the errors are not normally
distributed. Hence, it makes sense to specify a more general distribution. A
quite general class of distributions is given by a mixture of two normal distri-
butions. Therefore we assume that ut is a mixture of two serially independent
normal random vectors such that

ut =

{
e1t ∼ N (0, Σ1) with probability γ,
e2t ∼ N (0, Σ2) with probability 1− γ.

(3.2)

Here N (0, Σ) denotes a multivariate normal distribution with zero mean
and covariance matrix Σ. The (K × K) covariance matrices Σ1 and Σ2

are assumed to be distinct and the mixture probability γ, 0 < γ < 1, is a
parameter of the model. If Σ1 = Σ2, ut has a N (0, Σ1) distribution and γ is
not identified. Therefore we assume Σ1 6= Σ2. We note that ut has mean zero
and covariance matrix Σu = γΣ1+(1−γ)Σ2, that is, ut ∼ (0, γΣ1+(1−γ)Σ2).

This model was proposed by Lanne and Lütkepohl (2008b) who also show
that a (K×K) matrix W and a diagonal matrix Ψ = diag(ψ1, . . . , ψK), ψi > 0
(i = 1, . . . , K), exist such that Σ1 = WW ′ and Σ2 = WΨW ′. Thus, we may
parameterize Σu as

Σu = W (γIK + (1− γ)Ψ)W ′. (3.3)

If all ψi’s are distinct, then, for a given ordering of the ψi’s, the matrix W
in this decomposition is unique except that all signs of a column may be
reversed. If we choose

A−1
0 = W (γIK + (1− γ)Ψ)1/2 (3.4)
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so that Σu = A−1
0 A−1′

0 , this decomposition of Σu is the unique one (apart
from sign changes) which diagonalizes both Σ1 and Σ2 and also, of course,
Σu. In other words, if we think of the two normal distributions which are
mixed in (3.2) as representing two different regimes, the structural shocks are
uncorrelated in both regimes. Hence, as in the heteroskedastic model, any
additional restrictions on A0 are over-identifying and, thus, testable. Note
that this model differs from the previous one in that the allocation of time
periods to the regimes is governed by a random mechanism whereas in Section
3.1 we have assumed that the regime changes occur at fixed, prespecified time
points. Also, the residual distribution in (3.2) is not heteroskedastic.

4 Estimation

For our mixed normal model, maximum likelihood (ML) estimation is in
principle the method of choice because we have made an assumption re-
garding the distribution of the residuals. Also for the heteroskedastic model
using Gaussian ML estimation is useful because it results in estimators with
desirable asymptotic properties even if the actual residual distribution is non-
Gaussian. For both models the likelihood function and its normal equations
are nonlinear in the parameters, however. Therefore maximizing the full like-
lihood function may be a formidable task if the dimension of the process, K,
and/or the VAR order, p, are large, as in the case of our empirical example.
Because the VAR coefficients can be estimated consistently by equation-wise
OLS with standard asymptotic properties, it is in fact possible to estimate the
structural parameters based on a “concentrated likelihood function” where
the VAR coefficients are replaced by their OLS estimators. The resulting es-
timation methods for the two models of interest here will be discussed next.
We denote by ût = Zt − D̂dt − Â1Zt−1 − · · · − ÂpZt−p the residuals from
estimating the reduced form VAR model (2.1) by equation-wise OLS.

4.1 Heteroskedastic Residuals

Let us focus on the case of two regimes with different residual covariance
matrices as in (3.1) with Σ1 = WW ′ and Σ2 = WΨW ′ and define

Σ̃1 =
1

TB − 1

TB−1∑
t=1

ûtû
′
t and Σ̃2 =

1

T − TB + 1

T∑
t=TB

ûtû
′
t.

Replacing the VAR parameter estimators in the Gaussian log-likelihood func-
tion by their OLS estimators gives a “concentrated log likelihood function”
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of the form

log LH = −TB − 1

2

(
log det(WW ′) + tr

{
Σ̃1(WW ′)−1

})

−T − TB + 1

2

(
log det(WΨW ′) + tr

{
Σ̃2(WΨW ′)−1

})
.

(4.1)

Maximizing this function gives estimators W̃ and Ψ̃ of W and Ψ, respectively.
Note, however, that these estimators are not full ML estimators even if the
true residual distribution is Gaussian because the OLS estimators of the
VAR coefficients from (2.1) are not ML estimators. They do not account
for the heteroskedasticity in the residuals. We will use the estimators of the
structural parameters obtained from maximizing (4.1) and refer the reader
to Lanne and Lütkepohl (2008a) for further discussion of the estimation
procedure and the properties of the estimators.

Any over-identifying restrictions imposed on the structural parameters
can be tested by likelihood ratio (LR) type tests. Thus, if the identification
schemes considered in Section 2 imply over-identifying restrictions we can
check them against the data by LR type tests based on optimizing the objec-
tive function (4.1) with and without restrictions. Clearly, the resulting tests
are not really LR tests because they are based on maximizing the pseudo
concentrated likelihood in (4.1) rather than the fully maximized likelihood
function. Still it can be seen from the discussion in Lanne and Lütkepohl
(2008a) that they have the usual asymptotic properties of standard LR tests.
Therefore we may use a χ2 distribution with as many degrees of freedom (df)
as there are zero restrictions imposed on A0, provided all ψi’s are distinct.
If the latter condition is not satisfied, the asymptotic distribution of our
pseudo LR test will still be χ2 under general conditions. The number of df
may be smaller than the number of zeros placed on A0, however. In other
words, our tests may be conservative when used with critical values from a
χ2 distribution with as many df as there are zero restrictions on A0.

It is straightforward to extend the estimation procedure to the case of
more than two regimes. We will not present the details to save space. In the
empirical analysis models with up to three regimes will be used. It may also
be worth noting that Rigobon (2003) has shown for his slightly less general
setup that the time invariant parameters may be estimated consistently under
usual assumptions even if the break times are fixed incorrectly.

4.2 Mixed Normal Residuals

For the mixed normal model (3.2) with Σ1 = WW ′ and Σ2 = WΨW ′ we
estimate the parameters γ, Ψ and W by maximizing the pseudo concentrated

8



likelihood function

LMN (W, Ψ, γ) =
T∏

t=1

f̂t−1(Zt), (4.2)

where

f̂t−1 (Zt) = γ det(W )−1 exp

{
−1

2
û′t(WW ′)−1ût

}

+ (1− γ) det(Ψ)−1/2 det(W )−1 exp

{
−1

2
û′t(WΨW ′)−1ût

}
.

Regarding tests of over-identifying restrictions for the structural parameters
the same applies as for the heteroskedastic model. Thus, both model types
allow us to test the restrictions for the A0 parameters presented in Section 2
if at least some of the diagonal elements of Ψ are different and the model is
a valid representation of the DGP.

5 Empirical Analysis

In the empirical analysis we use monthly US data for the period 1965M7 -
1995M6 which corresponds to the sample period used by CEE.1 A similar
sample period was also used in studies by Bernanke and Mihov (1998b) and
Lanne and Lütkepohl (2008a). Our sample size is 360. We use nonfarm
payroll employment as proxi for aggregate output and the implicit deflator
of personal consumption expenditure as proxi for its deflator, as in CEE. The
reduced form model is a 7-dimensional VAR(12) with an intercept.

The literature on the monetary transmission mechanism in the US presents
evidence for a number of possible structural breaks during our sample period
and in particular changes in the volatility of the shocks are diagnosed by
different authors. Thus, our heteroskedastic model may be justified. More-
over, we have applied tests for nonnormality to the residuals of our model
and have found clear evidence against Gaussian residuals. Therefore, con-
sidering a more general distribution class such as the mixed normal seems
also reasonable. In the following we will consider both types of modelling
assumptions. Thereby we will also be able to study the robustness of our
main results with respect to the identifying assumptions.

1The data were obtained from L. Christiano’s homepage
http://www.faculty.econ.northwestern.edu/faculty/christiano/research.htm.
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Table 1: Estimation Results for Parameters of VAR(12) Models with Het-
eroskedastic Errors for Sampling Period 1965M7 - 1995M6

1 Regime 2 Regimes
Parameter Estimate Std Err Estimate Std Err Estimate Std Err
ψ1 0.8000 0.1334 0.8735 0.2761 0.4623 0.0801
ψ2 1.2588 0.2034 1.2161 0.4405 0.7458 0.1284
ψ3 0.4927 0.0740 0.9791 0.2845 0.7992 0.1397
ψ4 0.3063 0.0487 5.2158 1.1729 0.6916 0.1179
ψ5 0.3866 0.0686 1.5875 0.4137 1.8507 0.3110
ψ6 1.6341 0.2919 1.7791 0.5160 1.4448 0.2481
ψ7 0.7189 0.1131 0.6639 0.3452 0.3619 0.0757

5.1 Results for Heteroskedastic Models

As mentioned earlier, different dates of possible volatility changes were found
in the literature for similar models during our sample period. In the following
we will only consider changes in 1979M10 and 1984M2. Bernanke and Mihov
(1998b) and CEE agree on these dates. According to Bernanke and Mihov
(1998b, p. 880) the choice of these two break dates is based on a “combina-
tion of historical and statistical evidence.” Moreover, Lanne and Lütkepohl
(2008a) present further statistical evidence for changes in the residual co-
variances of models similar to ours in these two months. Notice that the
intermediate period 1979M10 - 1984M2 roughly corresponds to the Volcker
era which is often regarded as special as far as monetary policy is concerned.

There is some disagreement in the literature regarding the type of struc-
tural break. Our assumption of a heteroskedastic model is supported by
Bernanke and Mihov (1998b) and CEE. Assuming changes only in the dis-
turbance covariance matrices and, hence, in the volatility of the structural
shocks is not uncommon in the related literature (see, for example, Sims and
Zha (2006)). In summary, our heteroskedastic model and our assumptions
regarding the timing of changes in the volatility are not unconventional and
have been confirmed by a variety of methods and authors.

For illustrative purposes and to check the robustness of our results we
consider a model with just one change in the residual covariance in 1984M2
and one with two changes in 1979M10 and 1984M2. The evidence for a
change in 1984M2 was somewhat stronger than for 1979M10 in the study
by Lanne and Lütkepohl (2008a). It is therefore plausible to use 1984M2 as
break date if only one break is considered.

The estimated ψi’s for both models are presented in Table 1. These
parameters are of particular interest because the shocks are fully identified
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Table 2: LR Type Tests of Identification Schemes Based on Heteroskedastic
Models
Regime Change in 1984M2

H0 df mean loglik LR p-value
NBR/TR a12 = 0 4 5.3441 3.4104 0.4916

a13 = 0 8 5.3337 10.6070 0.2250
a23 = 0 2 5.3485 0.3271 0.8491
a12 = a13 = a23 = 0 14 5.2895 41.3633 0.0002

NBR a12 = 0 3 5.3481 0.5916 0.8984
a13 = 0 9 5.3388 7.0505 0.6319
a23 = 0 3 5.3484 0.4176 0.9366
a12 = a13 = a23 = 0 15 5.3164 22.6687 0.0914

FF a12 = 0 3 5.3479 0.7726 0.8560
a13 = 0 9 5.3362 8.8949 0.4470
a23 = 0 3 5.3477 0.8700 0.8327
a12 = a13 = a23 = 0 15 5.3320 11.7833 0.6954

Regime Change in 1979M10 and 1984M2
H0 df mean loglik LR p-value

NBR/TR a12 = 0 4 5.4155 26.3575 2.6802e–5
a13 = 0 8 5.4233 20.9426 0.0073
a23 = 0 2 5.4525 0.6334 0.7286
a12 = a13 = a23 = 0 14 5.3660 60.8736 8.3617e–8

NBR a12 = 0 3 5.4516 1.2528 0.7404
a13 = 0 9 5.4119 28.8631 0.0007
a23 = 0 3 5.4514 1.3433 0.7189
a12 = a13 = a23 = 0 15 5.3991 37.7858 0.0010

FF a12 = 0 3 5.4494 2.7770 0.4273
a13 = 0 9 5.4402 9.1872 0.4202
a23 = 0 3 5.4512 1.5451 0.6719
a12 = a13 = a23 = 0 15 5.4284 17.4070 0.2951
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by assuming orthogonality in both regimes if all the ψi’s are distinct. Taking
into account the standard errors in Table 1, it is not clear that all the ψi’s
are distinct in the two models. On the other hand, the estimates present
strong evidence that at least some of the ψi’s in each of the two models are
different. That result is in fact sufficient to test the structural restrictions
from Section 2. Notice that if some of the ψi’s are distinct, at least some of
the structural restrictions can be tested. Using the LR type tests mentioned
in Section 4 for checking the restrictions, the number of degrees of freedom
of the asymptotic χ2 distributions may be lower than the number of zeros
imposed by the different identification schemes. Hence, it would reduce the
estimated p-values. Thus, the p-values of our tests based on the assumption
that all ψi’s are distinct would actually be conservative.

In Table 2 results for both models are presented with p-values based on
the assumption of distinct ψi’s. Given that these p-values are conservative,
any model that can be rejected on the basis of the p-value in Table 2 can
also be rejected if some of the ψi’s are equal.

The restrictions a12 = 0 and a13 = 0 imply that the monetary policy shock
is orthogonal to the elements of X1t; a12 corresponds to the direct effect of
St on X1t and a13 to the indirect effect via the impact of the shock on X2t.
The restriction a23 = 0 is derived from the assumption that the monetary
policy authority does not see X2t when setting St. For a correct identification
scheme none of the null hypotheses in Table 2 should be rejected. Clearly, this
condition is not satisfied for the NBR/TR scheme. This scheme is rejected
in both models, with one or two changes in covariance. At least the p-values
for the tests of a12 = a13 = a23 = 0 are smaller than 1% and, hence, the
NBR/TR scheme is clearly rejected even with our conservative tests. In
fact, if two regime changes are allowed for, there are even more rejections
and, hence, the evidence against the NBR/TR scheme is quite strong in our
setup.

For the NBR identification scheme the situation is also quite clear in the
model with two structural changes because both a13 = 0 and a12 = a13 =
a23 = 0 produce very small p values below 1% and are, hence, rejected at
common significance levels. The situation is different, however, if only one
change in covariance is allowed for. In that case, a12 = a13 = a23 = 0
is the only restriction that can be rejected at the 10% level in the NBR
scheme. Given that the model with two breaks is more credible and given that
our tests are potentially asymptotically conservative, these results present
considerable evidence also against the NBR identification scheme.

The situation is quite different for the FF identification scheme. Here
none of the p-values is even close to a reasonable significance level for a usual
test. In fact, all p-values are bigger than 20%. Thus, the FF scheme is
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the only one which can stand up against the data in our setup. Since our
tests are potentially conservative if not all ψi’s are distinct, it may well be
that our tests do not have enough power to show that even this scheme is
not compatible with the data. However, if anyone of the three identification
schemes is consistent with the data, it is the FF scheme, at least in our
testing framework.

One lesson to be learned from this exercise is that the model setup has a
substantial impact on the results. Ignoring one of the changes in the residual
covariance matrix can make a substantial difference. Nevertheless there is
also a considerable robustness in our results. Even if the change in 1979M10
is ignored the results point in the same direction as in the model which allows
for two changes. A sufficiently critical interpretation of the p-values would
result in the same overall conclusions in both models.

Our general result is to some extent in line with findings by Lanne and
Lütkepohl (2008a). Using a slightly different setup in which they also test
restrictions on the deeper parameters of the monetary models, they do not
find clear statistical evidence against either the NBR/TR or the FF model.
However, based on other criteria they find the NBR/TR model to be the
most plausible one. Clearly, the latter result is at variance with our tests
presented in Table 2.

5.2 Results for Model with Mixed Normal Residuals

As mentioned earlier, there is substantial statistical evidence against Gaus-
sian residuals. Therefore fitting a mixed normal distribution to the residuals
using the method described in Section 4 becomes a plausible alternative to
the approach used in the previous subsection. The estimated ψi’s are given
in Table 3. Clearly, taking into account the estimated standard errors, there
is strong evidence that at least some ψi’s are distinct. Therefore we proceed
under this assumption in the following. Again, our tests of restrictions for
the structural parameters may be conservative if some of the ψi’s are in fact
identical.

Interestingly, the results of the pseudo LR tests presented in Table 4 are
fully in line with those from the heteroskedastic model. The NBR/TR and
NBR models are strongly rejected because some of the p-values are smaller
than 1%, whereas the FF model can not be rejected at common significance
levels. Thus, if we let the data decide on the allocation of regimes rather than
fixing the change dates as in the heteroskedastic model, produces basically
the same conclusions regarding the different identification schemes for mon-
etary policy shocks. Thus, our results are overall quite robust to variations
in our identifying assumptions.
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Table 3: Estimation Results for Parameters of VAR(12) Model with Mixed
Normal Errors for Sampling Period 1965M7 - 1995M6
Parameter Estimate Std Err
ψ1 0.3400 0.0887
ψ2 0.6440 0.1581
ψ3 1.6064 0.4045
ψ4 2.0717 0.5018
ψ5 3.1103 0.7102
ψ6 5.1202 1.1495
ψ7 7.0656 1.5924
γ 0.8014 0.0441

Table 4: LR Type Tests of Identification Schemes Based on Mixed Normal
Model

H0 df mean loglik LR p-value
NBR/TR a12 = 0 4 5.3722 19.2931 0.0007

a13 = 0 8 5.3953 3.2086 0.9206
a23 = 0 2 5.3976 1.5938 0.4507

a12 = a13 = a23 = 0 14 5.3707 20.3441 0.1197

NBR a12 = 0 3 5.3847 10.6070 0.0141
a13 = 0 9 5.3628 25.8216 0.0022
a23 = 0 3 5.3974 1.7330 0.6296

a12 = a13 = a23 = 0 15 5.3625 26.0513 0.0375

FF a12 = 0 3 5.3979 1.4059 0.7042
a13 = 0 9 5.3832 11.6023 0.2367
a23 = 0 3 5.3987 0.8352 0.8410

a12 = a13 = a23 = 0 15 5.3745 17.6575 0.2811
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6 Conclusions

In this study we have compared three identification schemes for monetary
policy shocks which cannot be tested in a standard SVAR framework because
in that setting there are no over-identifying restrictions. We utilize the fact
that the underlying reduced form VAR model has a potentially changing
covariance structure and that the residuals are clearly nonnormal. These
data features allow us to get additional identifying information and enables
us to test the identification schemes for the monetary policy shocks against
the data. Only one of the three identification schemes is not rejected in this
framework. More precisely, a scheme where monetary shocks are induced
via the federal funds rate is the only one which cannot be rejected in our
framework. This result is robust with respect to the specific statistical setup
used. It is obtained for both the heteroskedastic model and a model with
mixed normal residuals.
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