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1 Introduction

In a vector autoregressive (VAR) analysis with integrated variables determin-

ing the cointegrating rank is central for setting up a well specified model. The

most popular method used for this purpose is the Johansen (1995) sequence of

cointegrating rank tests which are based on the likelihood ratio (LR) princi-

ple. It is well-known that the asymptotic distributions of these tests depend

on the deterministic term which is present in the data generation process

(DGP). Moreover, it is also known that the power of the tests depends on

the deterministic term allowed for in the model. More precisely, if the deter-

ministic term is over-specified the power may suffer substantially (Doornik,

Hendry and Nielsen (1998), Saikkonen and Lütkepohl (1999, 2000)); if a lin-

ear trend is allowed for while a constant is sufficient to capture the data

properties, a more powerful version of the cointegrating rank test can be ob-

tained by allowing only for a constant and no linear trend. Johansen (1995)

also proposes tests that can help in choosing the deterministic term. Hence,

given a null hypothesis of a specific cointegrating rank, one may test for the

deterministic term first and then use the cointegrating rank test with the

deterministic term suggested by the pretest. Pretesting has in fact been re-

ported in the literature, e.g., by Crowder and Hoffman (1996) and Peytrignet

and Stahel (1998).

On the other hand, practitioners often proceed in a different way if there

is uncertainty regarding the deterministic term. They perform tests based

on models with different possible deterministic terms and then decide on the

cointegrating rank in some way taking into account all the test results (e.g.,

Hubrich (2001)). In this study we will formalize this procedure and compare

it to the aforementioned pretest procedure.

In this context, the three most popular model versions in applied work

are: (i) a model for variables without linear trend, (ii) a model where at

least one of the variables has a linear trend but the cointegration relations

are trend free and (iii) a model with a general linear trend which may also be

part of the cointegration relations. In practice many economic variables are

known to have a deterministic time trend. Moreover, it can be checked by

univariate tests whether some of the variables are well modelled by including
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a linear trend. If so, the choice between (ii) and (iii) becomes relevant. For

the practitioner the main problem in the multivariate case becomes thus the

choice between (ii) and (iii). Hence, we will focus on this case in the following.

Clearly, focussing on a decision between (ii) and (iii) assumes that some

pretesting has been done on the univariate series. Such pretesting gives rise

to additional questions regarding the properties of the overall procedure.

These questions are quite delicate and challenging as is known from Harvey,

Leybourne and Taylor (2006), for example. Still the problem of choosing

between a model with a trend in the cointegration relations and one with a

linear trend which is orthogonal to the cointegration relations is a relevant

one and this is the subject of the present paper.

It appears that many applied economists have a preference for (ii) based

on a priori grounds. If a cointegration relation is interpreted as an equi-

librium relation, a linear trend in that relation may not be very plausible.

For example, Lettau and Ludvigson (2001), Coenen and Vega (2001), Erics-

son and Sharma (1998), Funke and Rahn (2005), Stephan (2006) and Ribba

(2006) apply cointegration tests which allow for a linear trend in the variables

but not in the cointegration relations in various contexts. On the other hand,

Hubrich (2001) applies both tests with and without allowing for a linear trend

in the cointegration relations and she checks the robustness of her results.

Crowder and Hoffman (1996) perform a test for the correct trend specifica-

tion and, based on its outcome, eliminate the trend from the cointegration

relations.

It will be shown in this paper that a testing sequence for the cointegrating

rank of a VAR process based on the LR test which assumes a trend orthog-

onal to the cointegration relations is asymptotically likely to end up with a

cointegrating rank smaller than the true one if the linear trend is in fact also

in the cointegration relations. This result suggests that in applied work, if

there is uncertainty with respect to the correct trend specification, one may

perform both tests, with and without trend in the cointegration relations,

and reject a given cointegrating rank if one of the tests rejects. This proce-

dure will be shown to work well relative to a procedure based on pretesting

for the correct trend specification. A corresponding result for unit root tests

was obtained by Harvey et al. (2006).
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The structure of this study is as follows: In the next section the gen-

eral model setup is presented. In Section 3 the procedures for determining

the cointegrating rank are discussed and in Section 4 the results of a small

sample comparison of these procedures are reported. Section 5 concludes.

Finally, the Appendix contains the derivation of the limiting distribution of

the cointegrating rank test applied to a misspecified model which does not

allow for a linear time trend in the cointegration relations although there is

one.

Throughout the paper we use the following abbreviations: ML for max-

imum likelihood, LR for likelihood ratio, DGP for data generation process,

VAR for vector autoregressive and VECM for vector error correction model.

Moreover, the differencing operator is signified by ∆, that is, for a stochastic

process xt, ∆xt = xt − xt−1. A stationary (short memory) or asymptotically

stationary process will sometimes be referred to as an I(0) process and a non-

stationary process which becomes stationary after differencing once is called

I(1) process. A normal (Gaussian) distribution with mean µ and variance

(covariance matrix) Σ is denoted by N (µ, Σ). Furthermore, R stands for the

set of real numbers. For a matrix A, rk(A) denotes its rank and A⊥ denotes

an orthogonal complement.

2 The Model Setup

We consider a K-dimensional system of I(1) variables yt = (y1t, . . . , yKt)
′

with deterministic term µt such that

yt = µt + xt, (1)

where µt = µ0 + µ1t is a K-dimensional linear trend term and xt is a K-

dimensional zero mean VAR(p) process with VECM representation

∆xt = Πxt−1 + Γ1∆xt−1 + · · ·+ Γp−1∆xt−p+1 + ut. (2)

The (K ×K) matrix Π is assumed to have rank r which is the cointegrating

rank of xt and, hence, of yt. The Γj’s (j = 1, . . . , p − 1) are (K × K)

coefficient matrices and the error term ut is an independently, identically
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distributed white noise process with zero mean and nonsingular covariance

matrix E(utu
′
t) = Σu. For simplicity we also assume that ut is Gaussian.

Thereby our tests are proper LR tests. For our arguments this assumption is

not essential and our results hold under more general assumptions, as usual.

In fact, our results are valid whenever the cointegrating rank tests to be

discussed in the following have their usual asymptotic properties.

For the deterministic term we consider the following alternative possibil-

ities:

1. µ1 6= 0 and Πµ1 = 0, that is, there is a trend in the variables which is,

however, orthogonal to the cointegration relations.

2. µ1 6= 0 and Πµ1 6= 0, that is, the trend is fully general and, hence, it is

also part of the cointegration relations.

Notice that rk(Π) = r implies that Π = αβ′ for suitable (K×r) matrices α

and β of rank r and β′yt represent the cointegration relations. Hence, Πµ1 =

0 is equivalent to β′µ1 = 0 which shows that Πµ1 = 0 is just another way of

stating that the linear trend is orthogonal to the cointegration relations. For

both linear trend specifications we can write the generation process of the

observed variables yt in VECM form as

∆yt = ν + Π(i)y
(i)
t−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut, (3)

where ν is an intercept term and the superscript i refers to the two cases of

deterministic terms. Hence,

Π(i) =

{
Π (K ×K), for i = 1,

Π∗ (K × (K + 1)), for i = 2.
(4)

Here the first K columns of Π∗ are equal to Π. Accordingly,

y
(i)
t−1 =





yt−1, for i = 1,

(y′t−1, t− 1)′, for i = 2
(5)

(see, e.g., Lütkepohl (2005, Section 6.4) for details).
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For given cointegrating rank r, the relevant model can be estimated by

Johansen’s reduced rank regression method in both cases. Under our Gaus-

sian assumptions this method delivers ML estimators. Since the cointegrat-

ing rank r is usually unknown, testing procedures for determining r will be

discussed in the next section.

3 Testing for the Cointegrating Rank

In the context of the model setup presented in the previous section, we are

interested in finding the cointegrating rank r. This quantity is typically

chosen by testing a sequence of hypotheses

H0(r0) : rk(Π) = r0 versus H1(r0) : rk(Π) > r0 (6)

for r0 = 0, 1, . . . , K − 1. The first rank r0 for which the null hypothesis

cannot be rejected is then chosen as an estimate for r. Alternatively one

may consider tests of H0 : rk(Π) = r0 versus H1 : rk(Π) = r0 + 1. This

choice would result in a completely analogous discussion and is therefore not

treated here in order to save space.

Because Gaussian ML estimation is straightforward, LR tests can readily

be used for testing (6) (Johansen (1995)). In the following we will denote by

LR(r0) the LR statistic based on a model with intercept only,

∆yt = ν + Πyt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut, (7)

and we use LR∗(r0) for the LR statistic based on the model with linear trend

term in the cointegration relations. Using this notation, the asymptotic null

distributions and the asymptotic distributions under local alternatives are

known for both test statistics if the deterministic term is specified properly

(see Johansen (1995) and Saikkonen and Lütkepohl (1999, 2000)).

Since we are interested in analyzing the properties of LR(r0) more closely,

it is useful to provide a more explicit expression of this statistic. Let R0

and R1 be the residuals of a regression of ∆yt and yt−1, respectively, on

1, ∆yt−1, . . . , ∆yt−p+1 and define Sij = T−1RiRj, i = 0, 1. Moreover, let

λ1 ≥ · · · ≥ λK ≥ 0 be the ordered eigenvalues of the matrix S01S−1
11 S10S−1

00 .
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Then

LR(r0) = −T

K∑

k=r0+1

log(1− λk). (8)

In other words, the test statistic is made up of the K−r0 smallest eigenvalues

of S01S−1
11 S10S−1

00 . If the true cointegrating rank r = r0, the matrix converges

in probability to a matrix with rank r0 which has K − r0 zero eigenvalues,

as the sample size T →∞. Hence, the limiting values of the K − r0 smallest

eigenvalues are zero. If the true cointegrating rank is greater than r0, at

least one of the eigenvalues (λr0+1) in the test statistic in (8) will be nonzero

asymptotically and, hence, −T log(1 − λr0+1) as well as LR(r0) diverge to

infinity as the sample size gets large. Thereby the test is consistent. The

following proposition shows that the number of zero eigenvalues increases by

one if the true DGP contains a linear trend in the cointegration relations

which is not accounted for in LR(r0). This result will be useful in motivating

one of the test procedures for the cointegrating rank when the actual trend-

ing properties are unknown.

Proposition 1.

If r = rk(Π) > 0 and Πµ1 6= 0, then S01S−1
11 S10S−1

00 converges in probability

to a matrix with exactly K − r + 1 zero eigenvalues, as T →∞. ¤

In the Appendix we will derive the limiting distribution of LR(r) under

the conditions of Proposition 1, that is, for the case where the rank test is

applied to a model with misspecified trend term. As a byproduct we will also

prove Proposition 1. Unfortunately, under the conditions of the proposition,

the limiting distribution of LR(r) depends in a complicated way on nuisance

parameters and is therefore not directly useful for devising a rank test. The

derivation of the limiting distribution of LR(r) is based on writing the DGP

as

∆yt = ν + αβ′(yt−1 − µ1(t− 1)) + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut

= ν + α2β
′
2µ0 + α1β

′
1yt−1 + α2β

′
2(yt−1 − µ0 − µ1(t− 1))

+Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut

= ν∗ + α1β
′
1yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + et, (9)
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where the cointegration matrix β (K × r) is chosen to have orthogonal

columns and such that β = [β1 : β2], where β1 (K × (r − 1)) and β2

(K × 1) have the properties β′1µ1 = 0 and β′2µ1 6= 0, ν∗ = ν + α2β
′
2µ0,

and et = ut + α2β
′
2xt−1. The representation in (9) suggests that the test

procedure tries to test the null hypothesis that there are r − 1 stationary

linear combinations of yt given by β′1yt−1 and K − r + 1 nonstationary linear

combinations of which one, β′2yt, is trend stationary and the others, β′⊥yt,

are I(1). The main reason why the limiting distribution of the test becomes

complicated is that the error term of the relevant model, et, is autocorrelated

(although stationary). Consequently, the resulting limiting distribution suf-

fers from problems similar to those previously encountered in unit root tests

with autocorrelated errors (see, e.g., Phillips (1987) or Phillips and Perron

(1988)). In particular, the limiting distribution involves ‘second order bias’

terms and complications resulting from the fact that the covariance matrix

of the error term differs from the long run covariance matrix. Although the

residual autocorrelation may be taken care of if data dependent lag order

selection procedures are used, as is often the case in applied work, this will

not fully eliminate the dependence of the limiting distribution on nuisance

parameters because the lagged differences of yt cannot fully capture the au-

tocorrelation in α2β
′
2xt−1.

Proposition 1 implies, however, that a test based on a model with mis-

specified (or better under-specified) deterministic term is likely to terminate

a testing sequence for the cointegrating rank too early and, hence, chooses

the rank too small because, even for large T there is a positive probability

for not rejecting a rank r0 = r − 1. Given this result, the procedure used

by many practitioners may not be implausible when they do not know the

precise deterministic term. They perform tests for both alternative trend

specifications and reject a cointegrating rank if one of the tests rejects. If

LR(r0) is applied although there is a trend in the cointegration relations,

then the test tends to terminate too early whereas in this case LR∗(r0) will

find the true cointegrating rank, r, or even overestimate r at least asymptot-

ically because a test based on LR∗(r0) is also consistent. On the other hand,

if there is no trend in the cointegration relations, LR∗(r0) will have reduced

power and will hence have a tendency to choose too small a cointegrating
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rank while in this case LR(r0) has its usual properties and, in particular,

the associated test is consistent so that it will reject all cointegrating ranks

below the true one at least asymptotically.

The procedure which decides on the basis of the outcome of both tests

can be compared formally to a pretest procedure which also tests the deter-

ministic term. As mentioned earlier, pretesting is, for instance, reported by

Crowder and Hoffman (1996) and Peytrignet and Stahel (1998). Thus, the

following two procedures for choosing an estimate r̂ of the true cointegrating

rank r will be considered in the following.

Procedure 1: For a given r0, starting with r0 = 0, use both LR(r0) and

LR∗(r0) to test H0(r0). Choose r̂ = r0 if none of the tests rejects. Otherwise

proceed to testing r0+1 etc. until a given rank is not rejected by both tests. ¤

Procedure 2: Choose r̂ = 0 if none of the tests rejects H0(0). Other-

wise proceed with r0 = 1. For a given r0 > 0, test H0 : Πµ1 = 0 versus

H1 : Πµ1 6= 0. If H0 is not rejected, use LR(r0) to test H0(r0). If H0 is

rejected, use LR∗(r0). Choose r̂ = r0 if the appropriate test does not reject

H0(r0). Otherwise proceed to rank r0 + 1 etc. until a given rank is not re-

jected. ¤

If r0 = 0, a pretest is not possible in Procedure 2 because there are no

cointegration relations under the null hypothesis. Still LR(0) and LR∗(0)

differ because they are based on different models. The null hypothesis r0 = 0

is rejected if one of the tests rejects, as in Procedure 1. Thus, the two

procedures differ only for r0 > 0.

In the pretest procedure the null hypothesis H0 : Πµ1 = 0 can be checked

by an LR test (e.g., Johansen (1995)). Proposition 1 suggests that this

procedure may have reduced power because a pretest may not reject H0 :

Πµ1 = 0 even if the trend is not orthogonal to the cointegration relations.

In that case LR(r0) is used which may then have low power. In the next

section we will report the results of a Monte Carlo study to explore the

small sample properties of the two aforementioned procedures for choosing

the cointegrating rank.
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4 Simulation Study

In this section we investigate the empirical small sample properties of the

two tests and the procedures for choosing the cointegrating rank if there

is uncertainty about the correct trend specification. We will consider both

types of DGPs with and without trend in the cointegration relations. All

simulations are done with R programs.

4.1 Monte Carlo Setup

Time series from DGPs with linear trend in the cointegration relations are

generated as

yt = µ0 + µ1t + xt t = 1, . . . , T, (10)

with

µ0 = 0 and µ1 = cιK , c = 0.1, 0.5,

where ιK is a (K × 1) vector of ones, and

xt =

[
ψIr 0

0 IK−r

]
xt−1 + ut, x0 = 0, ut = ϕut−1 + εt. (11)

Moreover,

εt ∼ N
(

0, Σu =

[
Ir Θ

Θ′ IK−r

])
(12)

is Gaussian white noise. Here the parameter |ψ| < 1 and Θ is an (r×(K−r))

matrix. The error process ut is a VAR(1) with scalar parameter ϕ, |ϕ| < 1,

for which we have used different values. Equivalently, we could have written

xt as a VAR(2) process. In (11) this process is expressed such that the unit

root and short-term properties are easy to disentangle. For ϕ = 0, xt is a

VAR(1), of course. This type of VAR(1) process was also used by Toda (1994)

and subsequently in a number of other simulation studies where properties

of cointegrating rank tests were explored (see, e.g., Hubrich, Lütkepohl and

Saikkonen (2001)). Toda argues that this process is useful for investigating
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the properties of LR tests for the cointegrating rank because other VAR(1)

processes can be obtained from it by linear transformations which leave the

tests invariant. Thus, this process allows us to explore the properties of

the tests for a wide range of DGPs. We have also used VAR(2) processes

because the short-term dynamics play a role in the asymptotic distribution

of the LR(r0) tests if the trend is under-specified. In the following results for

three- and five-dimensional DGPs will be presented.

Time series from DGPs with trend orthogonal to the cointegration rela-

tions will be generated as

yt = c

[
0

ιK−r

]
+

[
ψIr 0

0 IK−r

]
yt−1 + ut, y0 = 0, (13)

with ut as in (11). For both types of DGPs we generated 50 presample values

to reduce the effects of initial values.

For cointegrating rank r0, the LR statistic for testing H0 : Πµ1 = 0 is

easy to compute as

LR = T

r0∑

k=1

log[(1− λk)/(1− λ∗k)],

where the λk are the eigenvalues based on the model (7) without linear trend

term in the cointegration relations and the λ∗k are the corresponding eigen-

values from a reduced rank regression of a model with such a term. The test

statistic has a standard χ2 limiting distribution with r0 degrees of freedom

if the null hypothesis holds.

4.2 Monte Carlo Results

We have generated three- and five-dimensional time series from the two types

of DGPs specified in (10)-(12) and (13) with a range of different values for the

parameters ψ, c, ϕ, Θ and cointegrating rank r. We have also used different

sample sizes and data-driven VAR order selection based on AIC in some of

our simulations. A small selection of results is presented in Tables 1 - 8. The

nominal significance level for all tests is 5% because this is the leading case

considered in practice. In a range of simulations we have used ϕ = 0 and in
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that case the VAR order p = 1 is assumed to be known. Although in practice

the VAR order is typically unknown we have also generated results for known

VAR order to separate the two problems of choosing the cointegrating rank

and the VAR order. It is not obvious, however, that the VAR order should

be fixed at the true order of the DGP if the deterministic trend is under-

specified because the misspecification may result in autocorrelated errors, as

we have shown in Section 3. Therefore it is of interest to compare the known

VAR order case with results based on a data-driven VAR order selection.

In Table 1 results for three-dimensional VAR(1) processes (ϕ = 0) with

linear trend in the cointegration relations are presented. Here the VAR order

is fixed at p = 1. In this case the trend is under-specified in the LR(r0)

tests. Clearly this case requires that the true cointegrating rank r is at

least one because otherwise there cannot be a trend in the cointegration

relations. In Table 1 rejection frequencies for the two tests and the two

selection procedures (under the headings Proc 1 and Proc 2) are shown.

Notice that the test results are not conditioned on the outcome of the tests

for a smaller cointegrating rank. In other words, in Table 1 we are not

considering the properties of the testing sequence but those of individual

tests.

Testing H0(0), i.e., r0 = 0, gives an idea about the power of the different

tests and procedures. As mentioned in Section 3, for this null hypothesis

the two selection procedures are identical. If the true cointegrating rank is

r = 1 the LR(0) test has very little power relative to LR∗(0) and a similar

result is obtained for LR(1) and LR∗(1) if r = 2. This shows the effects of

under-specifying the trend on the performance of a test based on LR(r0).

In Table 2 the relative frequencies of the different cointegrating ranks

obtained with the two procedures are presented. In that table it is clearly

seen that following Procedure 1 leads to a substantially higher success rate

than Procedure 2 if the true cointegrating rank is r = 2 and Θ = 0. As

expected, both procedures lead to similar results if the true cointegrating

rank r = 1. Note that in this case there is no pretest involved in the only

test for which power is needed, i.e., the test of r0 = 0. Thus, for a three-

dimensional process the only case where a clear advantage of any of the

procedures can be expected is the r = 2 case and here Procedure 1 has a
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clear lead if Θ = 0. Its relative advantage is reduced, however, if our choice

of nonzero Θ matrix is used. In other words, there are processes where the

performance of both procedures is similar or Procedure 2 even has a small

lead. On the other hand, we have not found a single case where the advantage

of Procedure 2 over Procedure 1 was of the same magnitude as the lead of

Procedure 1 over Procedure 2 for, e.g., the case r = 2, Θ = 0. Notice also

that Procedure 1 does not suggest a cointegrating rank in excess of the true

one much more often than Procedure 2 in any of the cases and, hence, the

actual levels of both procedures are in fact comparable.

In fact, the rejection frequencies presented in Table 1 for Procedure 1 are

not substantially greater than the nominal significance level of 5%, if Θ = 0

and the true cointegrating rank is tested. This is especially true when the

trend slope is large (c = 0.5). In that case the level of Procedure 1 is not much

higher than that of Procedure 2. Of course, for true cointegrating rank r = 1,

one would not expect great differences between the two procedures because

for the null hypothesis H0(0) they are identical by definition and for H0(1)

we can only learn about the actual size properties of the two procedures.

Under the rather ideal conditions of our Monte Carlo setup, one would hope

for a rejection frequency close to 5% if the null hypothesis is true. In any

case, looking at the actual ranks selected in Table 2 it is clear that Procedure

1 selects the true cointegrating rank much more often than Procedure 2 in

some cases.

There is one slight problem, however, when a three-dimensional process is

considered. In applied work a practitioner may not consider testing H0(2) in

this situation if s/he believes that the trend is orthogonal to the cointegration

relations because this would be incompatible with the alternative hypothesis

rk(Π) = K, that is, the process is stationary under the alternative hypothesis

and cannot have a linear trend in model (7) with intercept only which would

be in contradiction to the assumption that there is a linear trend in the

variables. Therefore it makes sense to check how well our procedures do for

higher-dimensional processes for which they may be even more relevant and

closer to what practitioners really do in empirical studies.

In Table 3 the relative frequencies of ranks selected by the two proce-

dures for five-dimensional VAR(1) processes are presented. The VAR order
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is again assumed to be known and fixed at p = 1. Again we show results

for sample size T = 100 although that may be regarded as fairly low for a

five-dimensional system. We use this sample size because it is not uncommon

in applied work and the general results did not change much for substantially

larger sample sizes (e.g., T = 250). It can be seen in Table 3 that the dif-

ferences between the two procedures are not great if the true cointegrating

rank is r = 1 or if processes with Θ 6= 0 are considered. On the other hand,

substantially better results are obtained with Procedure 1 if Θ = 0 and the

true cointegrating rank is greater than one. In fact, the true rank may be

chosen more than 50% more often by Procedure 1 than by Procedure 2 (see,

e.g., the case where r = 2 and c = 0.5).

Thus, from the results presented so far it is clear that if there is indeed

a trend in the cointegrating relations, a researcher who uses Procedure 1 is

on the safe side. S/he never looses much relative to the pretest procedure

(Procedure 2) and may choose the true cointegrating rank substantially more

often for some of the DGPs considered. This general impression was rein-

forced by experiments with other DGPs and sample sizes even when the VAR

order was chosen by AIC. This result was also obtained with ψ’s closer to one.

In that case, depending on the actual value of ψ, the true cointegrating rank

may be underestimated considerably by both procedures, however, in partic-

ular for relatively high dimensional processes and sample size T = 100. Only

for substantially larger sample sizes, e.g., T = 250, can the true cointegrating

rank be expected to be found with high probability.

To illustrate this point we present results for a more difficult case in Table

4. The DGP underlying that table is a five-dimensional VAR(2) of the type

(10)-(12) with ϕ = −0.8 and ψ = 0.8. The sample size is again T = 100 and

the VAR order is now chosen by AIC using a maximum order of four.2 Order

selection is based on a VAR model in levels with an intercept term because

this appears to be a common approach in practice. We have also used VAR

order selection based on trend adjusted data in other experiments and found

2Generally we have chosen the maximum VAR order as the integer part of 4(T/100)1/4

as recommended in some of the related literature (e.g., Schwert (1989), Demetrescu, Kuzin
and Hassler (2008)). This choice leads, for example, to pmax = 4 for T = 100 and pmax = 5
for T = 250.
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qualitatively similar results. In Table 4, if r > 1, Procedure 1 still finds

the true rank much more often than Procedure 2. Both procedures are not

very successful in this respect, however. For example, for r = 3 and Θ = 0,

Procedure 1 finds the correct rank only in about 2% of the replications while

Procedure 2 performs even worse and ends up with only about 1% correct

choices. The message of these results is clearly that the probability of finding

the correct order with so little sample information in such a difficult situation

is very small. Procedure 1 at least tends to get closer to the true rank.

In Table 5 results for the same DGPs but with sample size T = 250 are

reported and a substantial improvement regarding the correct choice of the

cointegrating rank can be noticed. Still, one may regard success rates of

50% as low. These rates are, e.g., obtained by Procedure 1 if r = 3 and

Θ = 0. Obviously, Procedure 2 is considerably less successful in this respect

for r > 1. Thus, our results suggest that Procedure 1 has a particularly great

advantage in difficult situations where sample information is scarce.

Of course, the question arises how the tests behave for processes which

in fact have no trend in the cointegration relations. This question is consid-

ered next by analyzing results obtained for DGP (13). Some results based

on three-dimensional versions of DGP (13) are presented in Tables 6 and

7. Now both tests are in principle applicable and should have their usual

asymptotic null distributions because both of them are based on properly

specified models under the present conditions. Despite this fact, the LR(r0)

test rejects far too often in some cases, although it is designed especially for

this situation. For example, if the trend is not very pronounced (c = 0.1),

it rejects the true null hypothesis H0(2) in more than 25% of the cases, that

is, its actual level can be more than 25% when the nominal level is 5%. Of

course, one may argue that in practice, for a three-dimensional process, one

would not test H0(2) with the LR test because it leads to a contradiction

under the alternative, as argued earlier. On the other hand, even for r = 1

the test rejects a true null hypothesis in about 10% of the cases when the

nominal significance level is 5%. Thus, even under ideal conditions it overre-

jects considerably. This property is also reflected in the rejection frequencies

of Procedures 1 and 2 in Table 6.

Looking at the frequencies of ranks chosen in Table 7, it is seen that
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there is not much difference between the two procedures in any of the cases

although Procedure 2 finds the true rank slightly more often in most sit-

uations. We have also considered five-dimensional DGPs and show some

results in Table 8. Here again none of the two procedures has a substantial

lead over the other in any of the cases shown. In fact, now there are cases

were Procedure 1 is more successful in finding the true cointegrating rank

than Procedure 2 and there are also cases where the reverse is true. But in

any case the differences are not large. Given the substantial overrejection of

LR(r0) in some cases, it is also not surprising that there is some chance to

overestimate the cointegrating rank if it is in fact small. Thus, the overall

conclusion from looking at processes with trend in the variables but not in

the cointegration relations is that using either one of the procedures does not

result in substantial gains or losses relative to the other one.

This conclusion was also confirmed with other DGPs in difficult situations

where VAR(2) processes (ϕ 6= 0) and data-dependent order selection were

used. In these situations both procedures have a tendency in small samples to

overestimate small cointegrating ranks and underestimate large ones. Clearly

this reflects the tendency of LR(r0) to reject the null hypothesis too often in

some situations on the one hand, while on the other hand, the power may

be quite low in difficult situations when the sample size is small. Overall the

results for these cases are qualitatively similar to those shown in Figures 6-8

and are therefore not presented here to save space.

Summarizing the results from all of the experiments, the overall conclu-

sion is that there are DGPs for which Procedure 1, which is based on the

outcome of both tests, finds the true cointegrating rank much more often

than the pretest procedure (Procedure 2) whereas in other cases both proce-

dures perform in a very similar way. Thus, a practitioner who has based the

decision on the cointegrating rank on the outcome of both tests may in fact

have done the right thing. In some cases a better decision might have been

possible by applying a pretest procedure, however.
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5 Conclusions

In this study we have compared two procedures for choosing the cointegrating

rank of a VECM when the variables have a deterministic linear time trend

of unknown form. In that case there is a choice of two LR tests for the

cointegrating rank, the first one allows for a trend not only in the variables

but also in the cointegration relations, whereas the second one assumes that

the linear trend is orthogonal to the cointegration relations. If there is no

linear trend in the cointegration relations (i.e., the linear trend is orthogonal

to the cointegration relations), then the second test is preferable because it

may be substantially more powerful than the first one. We have derived the

asymptotic distribution of the second test if there is actually a linear trend

in the cointegration relations and, hence, the test is based on a misspecified

model. Unfortunately, in this case the limiting distribution depends in a

complicated way on nuisance parameters. It turns out, however, that if the

deterministic trend term is under-specified the test tends to be conservative.

Taking into account the asymptotic properties of the tests, two promising

procedures for choosing the cointegrating rank of a VAR process are (1) to

apply both tests and reject any rank for which one of the tests rejects the null

hypothesis and (2) to perform a pretest for the deterministic trend and choose

the test for the cointegrating rank on the basis of the outcome of the pretest.

Although it is not always fully clear how practitioners actually choose their

tests, both possibilities appear to have been used in the literature. Given our

theoretical results regarding the properties of the test which ignores a trend

in the cointegration relations and, hence, may be applied to a misspecified

model, both procedures have an asymptotic justification.

We have performed a Monte Carlo study to investigate the small sample

properties of the two procedures. In our simulations the first procedure which

is based on the outcome of both tests is overall preferable. It tends to find

the true cointegrating rank much more often than the pretest procedure for

some of the processes we have considered. Moreover, in those cases where the

pretest procedure dominates, it usually has only a small lead over the first

procedure. Therefore, based on our simulation results, the first procedure

can be recommended. Unfortunately, the LR tests for the cointegrating rank
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are known to have poor power for processes with large dimension and/or

order. Therefore both procedures may not find the true cointegrating rank

very often in extreme situations, which do arise in practice, however. With-

out a reasonably large sample size, finding the true cointegrating rank of a

large VAR process cannot be expected. Considering also lower-dimensional

subsystems and building up a higher-dimensional model by taking into ac-

count the cointegration relations from the lower-dimensional analysis may

be worthwhile in this case. This type of specific-to-general specification pro-

cedure may in fact be a good strategy more generally when cointegrated

variables are considered (e.g., Lütkepohl (2007)).

One possible direction for future research may be to develop a procedure

and the related theory which allows applied researchers to decide whether

or not a linear trend in the variables should be considered. Recall that we

have assumed that a linear deterministic trend is known to be present in at

least some of the variables. Although the trending properties of individual

variables can be explored with univariate methods, knowing the properties

of the overall procedure would be of interest.

Appendix: The Limiting Distribution of LR(r)

We use the notation and model setup of Section 2. Moreover, the space

of right-continuous functions on the interval [0, 1] which have left limits is

denoted by D[0, 1] and weak convergence on D[0, 1] with respect to the uni-

form topology is denoted by
w→. Convergence in probability is signified by

p→.

Furthermore, op(·) and Op(·) are the usual symbols for stochastic sequences

which converge to zero or are bounded, respectively.

The test statistic LR(r0) is made up of the ordered eigenvalues λ1 ≥
· · · ≥ λK ≥ 0 of the matrix S01S−1

11 S10S−1
00 . In what follows, r0 = r will

be assumed. As in Johansen (1995) these eigenvalues can alternatively be

computed as solutions to the determinantal equation

det(S(λ)) = det(λS11 − S10S−1
00 S01) = 0, (A.1)

where S(λ) abbreviates λS11 − S10S−1
00 S01.
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To obtain the limiting distribution of test statistic LR(r) under the con-

ditions of Proposition 1, we follow the pattern in Johansen (1995, p. 158-

160) with appropriate modifications. First we have to transform the ma-

trix S(λ) in a suitable manner. To this end, recall from equation (1) that

yt = µ0 +µ1t+xt, where xt is a zero mean cointegrated VAR(p) process with

cointegrating rank r. Let β (K×r) be a matrix of cointegrating vectors with

orthogonal columns. Proposition 1 assumes that β′µ1 6= 0 and postmultiply-

ing β by a suitable orthogonal matrix, we can transform this matrix to the

form [β1 : β2] where β1 (K × (r − 1)) and β2 (K × 1) have the properties

β′1µ1 = 0 and β′2µ1 6= 0, which will henceforth be assumed. Define the matrix

η = [β⊥ : β2] (K× (K− r +1)). The columns of the matrix η are orthogonal

and we can find a nonsingular matrix ξ such that ηξ = [γ : β2], where γ

(K × (K − r)) satisfies γ′µ1 = 0. The last column of ξ is a vector with last

component unity and all other components zero and the first K − r columns

of ξ can be taken as (η′µ1)⊥. Note that by construction the matrix γ′β⊥ is

nonsingular. One way to see this is to premultiply the identity ηξ = [γ : β2]

by the orthogonal matrix [η : β1]
′ = [β⊥ : β2 : β1]

′ which, by the definitions,

yields

[
(η′η)ξ

0

]
=




β′⊥γ 0

β′2γ β′2β2

0 0


 ,

where there are r−1 zero rows on both sides. Because the matrices η′η and ξ

are nonsingular the matrix on the left hand side has rank K − r + 1. For the

matrix on the right hand side to have the same rank, the rows of the matrix

β′⊥γ must be linearly independent, implying the nonsingularity of γ′β⊥.

Now consider weak convergence of the process T−1/2y[Ts], s ∈ [0, 1], in

the directions of the matrices γ and β2. We use the notation γ̄ = γ(γ′γ)−1

and similarly for any matrix of full column rank. Recall that, by Granger’s

representation theorem (e.g., Johansen (1995, Theorem 4.2)), the process xt

can be expressed as

xt = C

t∑
j=1

uj + Φ(L)ut + A, (A.2)
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where C = β⊥(α′⊥Ψβ⊥)−1α′⊥ with Ψ = IK − Γ1 − · · · − Γp−1, Φ(L) =∑∞
j=0 ΦjL

j with L the lag operator and the coefficient matrices Φj decay-

ing to zero exponentially fast, and A depends on initial values and satisfies

β′A = 0. Thus, because γ′µ1 = 0, equations (1) and (A.2) yield

T−1/2γ̄′y[Ts] = T−1/2γ̄′C
[Ts]∑
j=1

uj + op(1), (A.3)

where the latter term on the right hand side is op(1) in D[0, 1]. Similarly,

denoting τ = (β′2µ1)
−1β2 and observing that τ ′µ1 = 1 and τ ′C = 0 we can

write

T−1τ ′y[Ts] =
[Ts]

T
+ op(1) (A.4)

with the latter term on the right hand side again op(1) in D[0, 1]. These

results can be justified in the same way as their counterparts in the proof

of Lemma 10.2 of Johansen (1995) (or by using Theorem B.13 of the same

reference). Note, however, that in the latter result the op(1) term is only

due to a stationary process whereas in Johansen’s (1995) Lemma 10.2 it also

contains a random walk component. In the same way as in that lemma we

find that

T−1/2γ̄′y[Ts]
w→ γ̄′CW (s) and T−1τ ′y[Ts]

w→ s,

where W (s) is a Brownian motion with covariance matrix Σu. Using the

matrix BT =
[
γ̄ : T−1/2τ

]
these two results can be expressed as

T−1/2B′
T y[Ts]

w→ G0(s)
def
=

[
γ̄′CW (s)

s

]

and the corresponding demeaned version can also be obtained as in Jo-

hansen’s (1995) Lemma 10.2, giving

T−1/2B′
T (y[Ts]− ȳ)

w→ G(s)
def
= G0(s)−G0 =

[
γ̄′C(W (s)−W )

s− 1
2

]
, (A.5)

where G0 =
∫ 1

0
G0(s)ds and analogously for W .
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Similarly to Johansen (1995, p. 158) we now introduce the transforma-

tion matrix AT =
[
β1 : T−1/2BT

]
and transform the generalized eigenvalue

problem (A.1) used to obtain test statistic LR(r). Instead of det(S(λ)) we

can consider det(A′
TS(λ)AT ) and its weak limit. To this end, we need some

notation. As in Johansen (1995, p. 141) we define

Cov

[
∆xt

β′xt−1

∣∣∣∣∣ ∆xt−1, ..., ∆xt−p+1

]
=

[
Σ00 Σ0β

Σβ0 Σββ

]
.

By Σ0β1 (K × (r − 1)) we denote the submatrix of Σ0β (K × r) obtained by

deleting the last column so that Σ0β1 is the conditional covariance matrix be-

tween ∆xt and β′1xt−1, given ∆xt−1, ..., ∆xt−p+1. Similarly, Σββ1 (r× (r− 1))

is used for the matrix obtained by deleting the last column from Σββ (r× r)

and Σβ1β1 ((r−1)× (r−1)) signifies the matrix obtained by deleting the last

row and last column from Σββ. Properties of these matrices are given in the

following lemma.

Lemma 1.

Σ0β1 = αΣββ1 , (A.6)

Σ00 = αΣββα′ + Σu, (A.7)

and

Σ−1
00 − Σ−1

00 Σ0β1(Σβ10Σ
−1
00 Σ0β1)

−1Σβ10Σ
−1
00 = a(a′Σ00a)−1a′, (A.8)

where a = (αΣββ1)⊥ (K × (K − r + 1)).

Proof: Result (10.3) in Lemma 10.1 of Johansen (1995) shows that Σ0β =

αΣββ so that deleting the last columns from both sides gives (A.6). From

result (10.4) of the same lemma we also get (A.7). Because the matrix Σββ

(r×r) is positive definite, the matrix Σββ1 (r× (r−1)) is of full column rank

implying that Σ0β1 = αΣββ1 is of full column rank (see (A.6)). Noting that

a⊥ = Σ0β1 , we can demonstrate the last result of Lemma 1 by multiplying

(A.8) from the right by the matrices a⊥ and Σ00a. Multiplication by a⊥ =
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Σ0β1 clearly yields zero on both sides whereas multiplication by Σ00a yields

a on the right hand side and on the left hand side we get

a− Σ−1
00 (Σβ10Σ

−1
00 Σ0β1)

−1Σβ1βα′a = a.

This proves Lemma 1. ¤

The following intermediate results are similar to those in Lemma 10.3 of

Johansen (1995).

Lemma 2.

Under the conditions of Proposition 1,

S00
p→ Σ00, (A.9)

β1S11β1
p→ Σβ1β1 , (A.10)

β′1S10
p→ Σβ10, (A.11)

T−1B′
TS11BT

w→
∫ 1

0

GG′ds, (A.12)

B′
T (S10 − S11βα′) w→

∫ 1

0

GdW ′, (A.13)

B′
TS11β1 = Op(1), (A.14)

B′
TS10 = Op(1). (A.15)

Proof: From (1) and the fact β′1µ1 = 0 it follows that ∆yt and β′1yt are

jointly stationary and ergodic processes so that the first three results ((A.9)

- (A.11)) can be justified by using the definitions and the law of large numbers

in the same way as in the proof of Johansen’s (1995) Lemma 10.3. The results
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(A.12) and (A.14) are also obtained in the same way as their counterparts in

Johansen’s (1995) Lemma 10.3. Both make use of Johansen’s Theorem B.13

and the former also of (A.5) and the continuous mapping theorem. In view

of the same theorem and the expansions (A.3) and (A.4), (A.13) and (A.15)

are also readily obtained. ¤

Now consider the determinant

det(A′
TS(λ)AT )

w→ det

([
λΣβ1β1 0

0 λ
∫ 1

0
GG′ds

]
−

[
Σβ10Σ

−1
00 Σ0β1 0

0 0

])

= det(λΣβ1β1 − Σβ10Σ
−1
00 Σ0β1) det

(
λ

∫ 1

0

GG′ds

)
.

The weak convergence can be justified by using the definitions and (A.9) -

(A.12) (cf. (11.16) in Johansen (1995, p. 158)). Setting the limit equal to

zero it is seen that there are K − r + 1 zero roots and r − 1 positive roots

given by the solutions of

det(λΣβ1β1 − Σβ10Σ
−1
00 Σ0β1) = 0.

Thus, the r − 1 largest roots of (A.1) converge weakly to the roots of this

equation and the rest converge weakly to zero. This proves Proposition 1.

To derive an explicit expression for the limiting distribution of LR(r) we

can now follow arguments entirely similar to those starting at the top of page

159 of Johansen (1995). First consider the decomposition

[β1 : BT ]′ det(S(λ)) [β1 : BT ]

= det(β′1S(λ)β1) det(B′
T{S(λ)−S(λ)β1 [β′1S(λ)β1]

−1
β′1S(λ)}BT ) (A.16)

and let T →∞ and λ → 0 in such a way that ρ = Tλ is fixed. As in Johansen

(1995, p. 159), in order to derive the asymptotic distribution of the ρ’s it

suffices to consider the second factor of the right hand side of (A.16). This

follows from the fact that

β′1S(λ)β1 = ρT−1β′1S11β1 − β′1S10S−1
00 S01β1

= −Σβ10Σ
−1
00 Σ0β1 + op(1),
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which can be concluded from (A.9) - (A.11) in Lemma 2. Clearly, the deter-

minant of this term does not depend on ρ in the limit. Hence, to study the

properties of the roots we have to consider the second factor in (A.16). For

this factor, (A.9), (A.11), (A.14) and (A.15) yield

B′
TS(λ)β1 = ρT−1B′

TS11β1 −B′
TS10S−1

00 S01β1

= −B′
TS10Σ

−1
00 Σ0β1 + op(1)

and

BTS(λ)BT = ρT−1B′
TS11BT −B′

TS10S−1
00 S01BT

= ρT−1B′
TS11BT −B′

TS10Σ
−1
00 S01BT + op(1).

Using these results we find that (cf. Johansen (1995, p. 159))

B′
T{S(λ)− S(λ)β1 [β′1S(λ)β1]

−1
β′1S(λ)}BT

= ρT−1B′
TS11BT −B′

TS10N1S01BT + op(1),

where

N1 = Σ−1
00 − Σ−1

00 Σ0β1(Σβ10Σ
−1
00 Σ0β1)

−1Σβ10Σ
−1
00 .

From (A.8) it is known that this matrix can be expressed as

N1 = a(a′Σ00a)−1a′,

where a (K×(K−r+1)) is an orthogonal complement of αΣββ1 (K×(r−1)).

It is easy to see that a = [α⊥ : ᾱκ], where κ is an orthogonal complement of

Σββ1 (K × 1).

Thus, we have reduced the problem to investigating the weak limit of the

roots of

det(ρT−1B′
TS11BT −B′

TS10a(a′Σ00a)−1a′S01BT ) = 0. (A.17)

First we use (A.12) to conclude that T−1B′
TS11BT

w→ ∫ 1

0
GG′ds. Next we

consider the matrix

B′
TS10a = B′

T (S1u + S11βα′)a
def
= B′

TS1va,
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where S1v is the sample moment matrix between yt−1 and the stationary

process vt = ut + αβ′xt−1 corrected for (1, ∆yt−1, ..., ∆yt−p+1). The reason

why we can define vt by using xt−1 instead of yt−1 is that vt can be obtained

from the error correction form (3) by writing Π(2)y
(2)
t−1 = αβ′(yt−1 − µ0 −

µ1(t − 1)) + αβ′µ0 = αβ′xt−1 + αβ′µ0 and including αβ′µ0 in the intercept

term. Because mean corrected series are used, the change in the intercept

term has no effect.

To derive the weak limit of B′
TS10a = B′

TS1va we conclude from (A.2)

that the process vt has the linear representation

vt = ut + αβ′Φ(L)ut−1
def
= ut + wt

so that, with obvious notation,

B′
TS1va = B′

TS1ua + B′
TS1wa. (A.18)

Since B′
T (S10 − S11βα′) = B′

TS1u we find from (A.13) that

B′
TS1ua

w→
∫ 1

0

GdW ′a. (A.19)

For B′
TS1wa, the other component of B′

TS1va, we denote zt = (∆y′t−1, . . . , ∆y′t−p+1)
′

and let Sa−ib−j
stand for the sample covariance matrix of any two time series

at−i and bt−j. Then,

B′
TS1wa = B′

T Sy−1wa−B′
T Sy−1zS

−1
zz Szwa. (A.20)

For the first term on the right hand side we can use the definition of wt and

Theorem B.13 of Johansen (1995) to obtain

B′
T Sy−1wa

w→
∫ 1

0

GdW ′Φ(1)′βα′a +

[ ∑∞
k=1 Cov(∆yt, wt+k)a

0

]

def
=

∫ 1

0

GdW ′Φ(1)′βα′a + Λ∆ywa, (A.21)

where the zero is (1 × K) and Cov(∆yt, wt+k) on the right hand side can

be expressed by using the parameters in the linear representations of the

processes ∆yt and wt. A complication in the second term on the right hand
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side of (A.20) is that the covariance matrix Szw is not of order Op(T
−1/2) as

it is when we have ut in place of wt (cf. Johansen (1995, p. 148)). Therefore,

the second term does not vanish. Because zt and wt are jointly stationary

and ergodic processes, a law of large numbers and the fact B′
T Sy−1z = Op(1)

(to be justified shortly) give

B′
T Sy−1zS

−1
zz Szwa = B′

T Sy−1zΣ
−1
zz Σzwa + op(1), (A.22)

where Σzz = Cov(zt) and Σzw = Cov(zt, wt). Regarding the matrix B′
T Sy−1z,

consider B′
T Sy−1∆y−j

and conclude from (1), (A.2) and Theorem B.13 of Jo-

hansen (1995) that

B′
T Sy−1∆y−j

w→
∫ 1

0

GdW ′C ′ +

[ ∑∞
k=1 Cov(∆yt, ∆yt−j+k)

0

]

def
=

∫ 1

0

GdW ′C ′ + Λ∆y∆y−j
,

where the zero is (1×K). Thus, it follows that

B′
T Sy−1z

w→
[∫ 1

0

GdW ′C ′ + Λ∆y∆y−1 : · · · :
∫ 1

0

GdW ′C ′ + Λ∆y∆y−p+1

]

(A.23)

=

∫ 1

0

GdW ′C ′J + Λ∆yz,

where J = [IK : · · · : IK ] (K×K(p−1)) and Λ∆yz =
[
Λ∆y∆y−1 : · · · : Λ∆y∆y−p+1

]

(K ×K(p− 1)). Note that the last row of Λ∆yz is zero and the autocovari-

ances in Λ∆yz can again be expressed by using the parameters in the linear

representation of the process ∆yt.

Combining (A.20), (A.21), (A.22) and (A.23) we get

B′
TS1wa

w→
∫ 1

0

GdW ′Φ(1)′βα′a+Λ∆ywa+

(∫ 1

0

GdW ′C ′J + Λ∆yz

)
Σ−1

zz Σzwa,

which in conjunction with (A.18) and (A.19) gives

B′
TS1va

w→
∫ 1

0

GdW ′a +

∫ 1

0

GdW ′Φ(1)′βα′a + Λ∆ywa

+

(∫ 1

0

GdW ′C ′J + Λ∆yz

)
Σ−1

zz Σzwa (A.24)

def
=

∫ 1

0

GdW ′a + Ξ(G, Λ∆yw, Λ∆yz).
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Now recall that we need to study the weak limit of the roots of (A.17).

By (A.12), (A.24) and the identity B′
TS1va = B′

TS01a we get

ρT−1B′
TS11BT −B′

TS10a(a′Σ00a)−1a′S01BT

w→ ρ

(∫ 1

0

GG′ds

)
−

(∫ 1

0

GdW ′a + Ξ

)
(a′Σ00a)−1

(∫ 1

0

GdW ′a + Ξ

)′
,

(A.25)

where we have written Ξ for Ξ(G, Λ∆yw, Λ∆yz). The limit is a square matrix

of order K − r + 1. Set the determinant of the limit equal to zero and let

ρ1 ≥ · · · ≥ ρK−r+1 ≥ 0 be the ordered roots. Then we get the following result.

Proposition A.

Under the conditions of Proposition 1,

LR(r)
w→

K−r0+1∑
i=2

ρi.

¤

It is seen that the limiting distribution depends on a number of nuisance

parameters and, although some simplifications may be achieved, this depen-

dence appears complicated. For instance, the Brownian motion γ̄′CW (s) in

the definition of G(s) can be transformed to the standard Brownian motion

B1(s) = (γ̄′CΣuC
′γ̄)−1/2γ̄′CW (s) without changing the limiting distribution

of LR(r0) (cf. Johansen (1995, p. 160)). However, since this transformation

changes the matrices Λ∆yw and Λ∆yz by premultiplying their first K−r rows

by (γ̄′CΣuC
′γ̄)−1/2 the resulting simplification (if any) may not be great.

Making an analogous transformation from W (s) to B2(s) to deal with the

term dW in (A.25) (see Johansen (1995, p. 160)) does not work in our case

because in place of the matrix a′Σua we have a′Σ00a. Also, since a = [α⊥ : ᾱκ]

we can write Φ(1)′βα′a = Φ(1)′β [0 : κ] and (potentially) achieve a small sim-

plification in the definition of Ξ. However, it seems that any major simpli-

fications are not possible because it is, for instance, unlikely that the effect
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of the complicated ‘second order bias’ terms Λ∆yw and Λ∆yz could be totally

eliminated. Finally, note that the limiting distribution could be derived with-

out using the decomposition of B′
TS10a = B′

TS1va given in (A.18). The given

derivation shows better, however, how and why the resulting limiting distri-

bution differs from its counterparts obtained for the corresponding correctly

specified models.
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Table 1: Relative Rejection Frequencies of H0 : rk(Π) = r0 vs. H1 : rk(Π) >
r0 in 25 000 Replications Based on Time Series from DGP (10)-(12) with
K = 3, ψ = 0.5, ϕ = 0, Varying c, Θ, r and T = 100 (the nominal significance
level of the tests is 5% and the true VAR order p = 1 is used)

Θ = 0
c = 0.1 c = 0.5

true rank r0 LR(r0) LR∗(r0) Proc 1 Proc 2 LR(r0) LR∗(r0) Proc 1 Proc 2
r = 1 0 47.6 90.8 91.5 91.5 26.3 90.9 90.9 90.9

1 3.3 5.3 7.3 4.4 1.0 5.4 5.7 4.7
2 4.1 0.3 4.4 0.3 0.6 0.3 1.0 0.3

r = 2 0 99.1 100.0 100.0 100.0 98.2 100.0 100.0 100.0
1 23.4 96.7 96.9 63.4 8.7 97.0 97.0 58.3
2 3.1 5.1 8.0 4.6 0.1 5.2 5.3 5.1

Θ = (0.8, 0.4) or Θ′ = (0.8, 0.4)
r = 1 0 87.8 100.0 100.0 100.0 53.0 100.0 100.0 100.0

1 6.9 6.8 11.1 6.8 1.9 7.0 7.6 7.0
2 7.1 0.4 7.5 0.4 0.0 0.4 0.5 0.4

r = 2 0 99.8 100.0 100.0 100.0 99.4 100.0 100.0 100.0
1 46.1 99.1 99.3 99.1 6.7 99.2 99.2 99.2
2 11.6 5.3 16.0 5.3 0.4 5.4 5.8 5.4
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Table 2: Relative Frequencies of Cointegrating Ranks Selected in 25 000
Replications Based on Time Series from DGP (10)-(12) with K = 3, ψ = 0.5,
ϕ = 0, Varying c, Θ, r and T = 100 (the nominal significance level of the
tests is 5% and the true VAR order p = 1 is used)

Θ = 0 Θ = (0.8, 0.4) or Θ′ = (0.8, 0.4)
c = 0.1 c = 0.5 c = 0.1 c = 0.5

true rank r0 Proc 1 Proc 2 Proc 1 Proc 2 Proc 1 Proc 2 Proc 1 Proc 2
r = 1 0 8.4 8.4 9.0 9.0 0.0 0.0 0.0 0.0

1 84.2 87.0 85.2 86.2 88.8 93.1 92.3 92.9
2 6.0 4.2 5.3 4.4 8.2 6.3 7.1 6.5

r = 2 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 3.0 36.5 2.9 41.6 0.6 0.8 0.7 0.7
2 88.9 59.0 91.6 53.6 83.3 93.7 93.3 93.7
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Table 3: Relative Frequencies of Cointegrating Ranks Selected in 25 000
Replications Based on Time Series from DGP (10)-(12) with K = 5, ψ = 0.5,
ϕ = 0, Varying c, Θ, r and T = 100 (the nominal significance level of the
tests is 5% and the true VAR order p = 1 is used)

Θ = 0 Θ 6= 0
c = 0.1 c = 0.5 c = 0.1 c = 0.5

true rank r0 Proc 1 Proc 2 Proc 1 Proc 2 Proc 1 Proc 2 Proc 1 Proc 2
r = 1 0 32.0 32.0 35.2 35.2 5.0 5.0 5.3 5.3

1 60.4 63.4 58.1 60.1 84.6 87.7 85.8 87.0
2 6.8 4.1 6.0 4.2 9.2 6.5 8.1 7.0
3 0.6 0.3 0.5 0.3 0.9 0.5 0.5 0.4
4 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

r = 2 0 1.3 1.3 1.5 1.5 0.0 0.0 0.0 0.0
1 39.5 58.6 40.5 62.5 16.7 20.8 19.0 21.6
2 53.5 36.2 53.0 32.1 75.1 72.5 74.4 71.9
3 5.1 3.4 4.5 3.4 7.2 6.0 6.0 5.9
4 0.3 0.2 0.3 0.2 0.6 0.4 0.4 0.4

r = 3 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.8 8.8 0.8 12.7 0.0 0.5 0.0 1.0
2 32.6 43.3 33.0 41.2 17.9 19.1 18.8 18.7
3 61.5 44.0 61.6 42.2 75.7 74.8 75.8 74.9
4 4.4 3.5 4.1 3.4 5.5 5.0 4.8 4.8

r = 4 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 3.4 0.0 5.2 0.0 0.4 0.0 0.9
3 12.1 27.4 12.5 27.4 7.5 9.1 7.6 9.1
4 82.4 64.9 82.2 62.7 85.6 85.2 87.3 84.9

For Θ 6= 0 the following matrices were used: Θ = (0.4, 0.2, 0.4, 0.2), Θ =[
0.4 0.2 0.4
0.2 0.4 0.2

]
, Θ′ =

[
0.4 0.2 0.4
0.2 0.4 0.2

]
and Θ′ = (0.4, 0.2, 0.4, 0.2) for r = 1,

r = 2, r = 3 and r = 4, respectively.
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Table 4: Relative Frequencies of Cointegrating Ranks Selected in 25 000
Replications Based on Time Series from DGP (10)-(12) with K = 5, ψ = 0.8,
ϕ = −0.8, Varying c, Θ, r and T = 100 (the nominal significance level of the
tests is 5%, VAR order selected by AIC)

Θ = 0 Θ 6= 0
c = 0.1 c = 0.5 c = 0.1 c = 0.5

true rank r0 Proc 1 Proc 2 Proc 1 Proc 2 Proc 1 Proc 2 Proc 1 Proc 2
r = 1 0 73.5 73.5 74.2 74.2 58.5 58.5 59.2 59.2

1 22.1 23.8 21.8 23.2 34.2 36.9 33.9 36.6
2 3.5 2.2 3.3 2.1 6.0 3.8 5.8 3.5
3 0.5 0.2 0.5 0.2 0.9 0.5 0.7 0.4
4 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0

r = 2 0 63.4 63.4 64.1 64.1 34.0 34.0 34.8 34.8
1 29.6 32.2 29.0 31.8 47.7 53.6 47.4 53.6
2 5.9 3.8 5.8 3.4 15.1 10.2 15.0 9.7
3 0.9 0.4 0.7 0.3 2.6 1.7 2.3 1.5
4 0.1 0.0 0.1 0.0 0.3 0.2 0.3 0.2

r = 3 0 48.7 48.7 49.0 49.0 23.0 23.0 23.2 23.2
1 37.7 42.7 37.4 42.8 45.8 55.8 46.0 56.2
2 11.0 7.1 11.1 6.8 24.3 16.5 24.0 15.9
3 2.0 1.1 1.9 0.9 5.8 3.9 5.6 3.7
4 0.3 0.1 0.3 0.1 0.8 0.6 0.8 0.6

r = 4 0 31.9 31.9 32.1 32.1 20.3 20.3 20.3 20.3
1 40.1 49.1 39.8 49.4 39.2 52.1 38.4 52.4
2 19.9 14.5 20.2 14.1 27.0 19.1 27.3 19.0
3 6.1 3.5 6.1 3.4 10.3 6.4 10.8 6.3
4 1.4 0.7 1.3 0.6 2.7 1.6 2.5 1.5

For Θ 6= 0 see footnote of Table 3.
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Table 5: Relative Frequencies of Cointegrating Ranks Selected in 25 000
Replications Based on Time Series from DGP (10)-(12) with K = 5, ψ = 0.8,
ϕ = −0.8, Varying c, Θ, r and T = 250 (the nominal significance level of the
tests is 5%, VAR order selected by AIC)

Θ = 0 Θ 6= 0
c = 0.1 c = 0.5 c = 0.1 c = 0.5

true rank r0 Proc 1 Proc 2 Proc 1 Proc 2 Proc 1 Proc 2 Proc 1 Proc 2
r = 1 0 43.5 43.5 43.9 43.9 8.4 8.4 8.5 8.5

1 50.7 52.8 50.2 52.3 82.8 84.1 83.1 84.0
2 5.1 3.2 5.3 3.4 8.0 6.7 7.5 6.7
3 0.4 0.2 0.4 0.3 0.6 0.5 0.7 0.5
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

r = 2 0 4.0 4.0 3.8 3.8 0.0 0.0 0.0 0.0
1 48.8 67.1 48.3 68.0 26.0 29.1 26.4 29.5
2 42.6 25.5 43.1 24.7 67.3 64.3 66.9 63.8
3 4.0 2.8 4.1 2.9 6.0 5.9 5.9 5.8
4 0.4 0.2 0.3 0.2 0.4 0.4 0.5 0.5

r = 3 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 2.5 20.2 2.7 20.9 0.4 2.5 0.5 2.8
2 42.7 43.7 42.9 43.2 27.7 26.7 27.9 27.1
3 50.2 32.6 49.9 32.3 66.4 65.2 66.1 64.6
4 4.1 3.1 3.9 3.1 5.0 5.0 4.9 4.9

r = 4 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.1
2 0.3 9.4 0.3 9.7 0.1 1.9 0.2 1.9
3 20.3 31.8 20.5 31.8 13.4 14.6 13.9 15.1
4 74.3 54.1 74.0 53.9 81.1 78.3 80.7 77.7

For Θ 6= 0 see footnote of Table 3.
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Table 6: Relative Rejection Frequencies of H0 : rk(Π) = r0 vs. H1 : rk(Π) >
r0 in 25 000 Replications Based on Time Series from DGP (13) with K = 3,
ψ = 0.5, ϕ = 0, Varying c, Θ, r and T = 100 (the nominal significance level
of the tests is 5% and the true VAR order p = 1 is used)

Θ = 0
c = 0.1 c = 0.5

true rank r0 LR(r0) LR∗(r0) Proc 1 Proc 2 LR(r0) LR∗(r0) Proc 1 Proc 2
r = 1 0 98.5 91.1 98.8 98.8 98.0 91.0 98.4 98.4

1 9.4 5.3 12.2 9.0 5.5 5.4 9.0 5.5
2 8.8 0.3 9.1 6.8 2.6 0.3 2.9 1.9

r = 2 0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0
1 99.9 96.6 99.9 99.6 99.9 96.6 99.9 99.5
2 25.8 4.9 28.6 23.9 6.2 5.1 10.8 6.1

Θ = (0.8, 0.4) or Θ′ = (0.8, 0.4)
r = 1 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1 11.1 7.0 14.7 10.8 7.0 6.9 11.3 7.1
2 9.3 0.4 9.6 7.2 3.2 0.3 3.6 2.5

r = 2 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1 99.9 99.2 100.0 99.9 99.9 99.1 99.9 99.9
2 25.3 5.5 28.5 23.6 7.3 5.3 11.8 7.1

Table 7: Relative Frequencies of Cointegrating Ranks Selected in 25 000
Replications Based on Time Series from DGP (13) with K = 3, ψ = 0.5,
ϕ = 0, Varying c, Θ, r and T = 100 (the nominal significance level of the
tests is 5% and the true VAR order p = 1 is used)

Θ = 0 Θ = (0.8, 0.4) or Θ′ = (0.8, 0.4)
c = 0.1 c = 0.5 c = 0.1 c = 0.5

true rank r0 Proc 1 Proc 2 Proc 1 Proc 2 Proc 1 Proc 2 Proc 1 Proc 2
r = 1 0 1.2 1.2 1.5 1.5 0.0 0.0 0.0 0.0

1 86.5 89.7 89.4 92.9 85.2 89.1 88.6 92.8
2 8.1 6.0 7.5 4.7 10.1 7.3 9.5 5.9

r = 2 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.3 0.0 0.4 0.0 0.0 0.0 0.0
2 71.3 75.7 89.1 93.3 71.4 76.2 88.1 92.7
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Table 8: Relative Frequencies of Cointegrating Ranks Selected in 25 000
Replications Based on Time Series from DGP (13) with K = 5, ψ = 0.5,
ϕ = 0, Varying c, Θ, r and T = 100 (the nominal significance level of the
tests is 5% and the true VAR order p = 1 is used)

Θ = 0 Θ 6= 0
c = 0.1 c = 0.5 c = 0.1 c = 0.5

true rank r0 Proc 1 Proc 2 Proc 1 Proc 2 Proc 1 Proc 2 Proc 1 Proc 2
r = 1 0 19.8 19.8 21.8 21.8 1.6 1.6 1.7 1.7

1 70.1 73.0 68.9 72.1 85.5 89.3 86.4 90.4
2 8.8 6.3 8.3 5.5 11.3 8.1 10.6 7.0
3 0.9 0.5 0.7 0.4 1.2 0.7 1.0 0.6
4 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0

r = 2 0 0.1 0.1 0.2 0.2 0.0 0.0 0.0 0.0
1 20.1 25.8 22.7 28.6 6.6 9.1 7.7 10.4
2 70.2 67.2 69.4 66.3 81.4 82.5 82.3 82.9
3 8.0 5.8 6.8 4.4 10.3 7.3 8.9 6.0
4 0.6 0.4 0.4 0.2 0.7 0.5 0.7 0.4

r = 3 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0
2 8.3 13.3 10.7 15.8 3.1 5.7 4.2 6.9
3 80.3 78.3 81.5 79.1 84.1 84.9 86.0 87.0
4 7.2 5.3 6.3 4.1 8.3 6.1 7.9 4.9

r = 4 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.2 2.2 0.3 2.3 0.0 1.1 0.1 1.2
4 71.8 75.5 89.5 92.0 71.6 76.1 89.1 92.5

For Θ 6= 0 see footnote of Table 3.
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