dc.contributor.author | SCHLAG, Karl H. | en |
dc.contributor.author | BALKENBORG, Dieter | en |
dc.date.accessioned | 2006-05-18T11:47:51Z | |
dc.date.available | 2006-05-18T11:47:51Z | |
dc.date.created | 2006 | en |
dc.date.issued | 2006 | en |
dc.identifier.citation | Journal of Economic Theory, 2007, 131, 1, 295-315 | en |
dc.identifier.uri | https://hdl.handle.net/1814/4375 | |
dc.description.abstract | It is well established for evolutionary dynamics in asymmetric games that a pure strategy combination is asymptotically stable if and only if it is a strict Nash equilibrium. We use an extension of the notion of a strict Nash equilibrium to sets of strategy combinations called strict equilibrium set and show the following. For a large class of evolutionary dynamics, including all monotone regular selection dynamics, every asymptotically stable set of rest points that contains a pure strategy combination in each of its connected components is a strict equilibrium set. A converse statement holds for two-person games, for convex sets and for the standard replicator dynamic. | en |
dc.language.iso | en | en |
dc.relation.ispartof | Journal of Economic Theory | |
dc.title | On the Evolutionary Selection of Sets of Nash Equilibria | en |
dc.type | Article | en |
dc.neeo.contributor | SCHLAG|Karl H.|aut| | |
dc.neeo.contributor | BALKENBORG|Dieter|aut| | |
dc.identifier.volume | 131 | |
dc.identifier.startpage | 295 | |
dc.identifier.endpage | 315 | |