dc.contributor.author | BRANDMAIER, Andreas M. | |
dc.contributor.author | VON OERTZEN, Timo | |
dc.contributor.author | GHISLETTA, Paolo | |
dc.contributor.author | LINDENBERGER, Ulman | |
dc.contributor.author | HERTZOG, Christopher | |
dc.date.accessioned | 2018-12-06T13:55:13Z | |
dc.date.available | 2018-12-06T13:55:13Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Frontiers in psychology, 2018, Vol. 9, (294) | |
dc.identifier.issn | 1664-1078 | |
dc.identifier.other | Art. No. 294 | |
dc.identifier.uri | https://hdl.handle.net/1814/59919 | |
dc.description | Published: 17 April 2018 | en |
dc.description.abstract | Latent Growth Curve Models (LGCM) have become a standard technique to model change over time. Prediction and explanation of inter-individual differences in change are major goals in lifespan research. The major determinants of statistical power to detect individual differences in change are the magnitude of true inter-individual differences in linear change (LGCM slope variance), design precision, alpha level, and sample size. Here, we show that design precision can be expressed as the inverse of effective error. Effective error is determined by instrument reliability and the temporal arrangement of measurement occasions. However, it also depends on another central LGCM component, the variance of the latent intercept and its covariance with the latent slope. We derive a new reliability index for LGCM slope variance-effective curve reliability (ECR)-by scaling slope variance against effective error. ECR is interpretable as a standardized effect size index. We demonstrate how effective error, ECR, and statistical power for a likelihood ratio test of zero slope variance formally relate to each other and how they function as indices of statistical power. We also provide a computational approach to derive ECR for arbitrary intercept-slope covariance. With practical use cases, we argue for the complementary utility of the proposed indices of a study's sensitivity to detect slope variance when making a priori longitudinal design decisions or communicating study designs. | |
dc.description.sponsorship | Max Planck Society | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.publisher | Frontiers Media | en |
dc.relation.ispartof | Frontiers in psychology | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Linear latent growth curve model | |
dc.subject | Statistical power | |
dc.subject | Effect size | |
dc.subject | Effective error | |
dc.subject | Structural equation modeling | |
dc.subject | Reliability | |
dc.subject | Longitudinal study design | |
dc.subject | Covariance structure-analysis | en |
dc.subject | Structural equation models | en |
dc.subject | Likelihood ratio test | en |
dc.subject | Sample-size | en |
dc.subject | Individual-differences | en |
dc.subject | Parameter-estimation | en |
dc.subject | Equivalent models | en |
dc.subject | Longitudinal data | en |
dc.subject | Oldest-old | en |
dc.subject | Design | en |
dc.title | Precision, reliability, and effect size of slope variance in latent growth curve models : implications for statistical power analysis | |
dc.type | Article | en |
dc.identifier.doi | 10.3389/fpsyg.2018.00294 | |
dc.identifier.volume | 9 | |
eui.subscribe.skip | true | |
dc.rights.license | Creative Commons CC BY 4.0 | |