Date: 2018
Type: Article
Long-range memory, distributional variation and randomness of bitcoin volatility
Chaos solitons & fractals, 2018, Vol. 107, pp. 43-48
LAHMIRI, Salim, BEKIROS, Stelios D., SALVI, Antonio, Long-range memory, distributional variation and randomness of bitcoin volatility, Chaos solitons & fractals, 2018, Vol. 107, pp. 43-48
- https://hdl.handle.net/1814/60004
Retrieved from Cadmus, EUI Research Repository
We investigate the nonlinear patterns of volatility in seven Bitcoin markets. In particular, we explore the fractional long-range dependence in conjunction with the potential inherent stochasticity of volatility time series under four diverse distributional assumptions, i.e., Normal, Student-t, Generalized Error (GED), and t-Skewed distribution. Our empirical findings signify the existence of long-range memory in Bitcoin market volatility, irrespectively of distributional inference. The same applies to entropy measurement, which indicates a high degree of randomness in the estimated series. As Bitcoin markets are highly disordered and risky, they cannot be considered suitable for hedging purposes. Our results provide strong evidence against the efficient market hypothesis.
Additional information:
Available online: 22 December 2017
Cadmus permanent link: https://hdl.handle.net/1814/60004
Full-text via DOI: 10.1016/j.chaos.2017.12.018
ISSN: 0960-0779; 1873-2887
Publisher: Elsevier
Files associated with this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |