Date: 2016
Type: Article
Structure and topology dynamics of hyper-frequency networks during rest and auditory oddball performance
Frontiers in computational neuroscience, 2016, Vol. 10 (Art. 108)
MUELLER, Viktor, PERDIKIS, Dionysios, VON OERTZEN, Timo, SLEIMEN-MALKOUN, Rita, JIRSA, Viktor, LINDENBERGER, Ulman, Structure and topology dynamics of hyper-frequency networks during rest and auditory oddball performance, Frontiers in computational neuroscience, 2016, Vol. 10 (Art. 108)
- https://hdl.handle.net/1814/61429
Retrieved from Cadmus, EUI Research Repository
Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies.
Additional information:
Published online: 17 October 2016
Cadmus permanent link: https://hdl.handle.net/1814/61429
Full-text via DOI: 10.3389/fncom.2016.00108
ISSN: 1662-5188
Publisher: Frontiers Media
Keyword(s): Functional connectivity Directional coupling Hyper-frequency network Network topology dynamics Graph-theoretic approach Resting state Auditory oddball performance Life-Span differences Functional connectivity Neuronal oscillations Phase synchronization Brain connectivity Cortical networks Memory processes Small-world State Cortex
Sponsorship and Funder information:
Max Planck Society Brain Network Recovery Group through the James S. McDonnell Foundation European Union Seventh Framework Program (FP7-ICT) [60402]
Files associated with this item
- Name:
- Structure_and_Topology.pdf
- Size:
- 14.26Mb
- Format:
- Description:
- Full-text in Open Access