Date: 2011
Type: Article
Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models
Journal of Applied Econometrics, 2011, 26, 5, 736-761
CARRIERO, Andrea, KAPETANIOS, George, MARCELLINO, Massimiliano, Forecasting Large Datasets with Bayesian Reduced Rank Multivariate Models, Journal of Applied Econometrics, 2011, 26, 5, 736-761
- https://hdl.handle.net/1814/19954
Retrieved from Cadmus, EUI Research Repository
The paper addresses the issue of forecasting a large set of variables using multivariate models. In particular, we propose three alternative reduced rank forecasting models and compare their predictive performance for US time series with the most promising existing alternatives, namely, factor models, large-scale Bayesian VARs, and multivariate boosting. Specifically, we focus on classical reduced rank regression, a two-step procedure that applies, in turn, shrinkage and reduced rank restrictions, and the reduced rank Bayesian VAR of Geweke (1996). We find that using shrinkage and rank reduction in combination rather than separately improves substantially the accuracy of forecasts, both when the whole set of variables is to be forecast and for key variables such as industrial production growth, inflation, and the federal funds rate. The robustness of this finding is confirmed by a Monte Carlo experiment based on bootstrapped data. We also provide a consistency result for the reduced rank regression valid when the dimension of the system tends to infinity, which opens the way to using large-scale reduced rank models for empirical analysis.
Cadmus permanent link: https://hdl.handle.net/1814/19954
Full-text via DOI: 10.1002/jae.1150
ISSN: 0883-7252
Initial version: http://hdl.handle.net/1814/12381
Version: Published version of EUI ECO WP 2009/31
Files associated with this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |